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Abstract  — Shared memory multiprocessor systems need 
efficient  memory  allocators,  primarily  for  parallel 
programming  support.  In  first  part  of  this  paper, 
comparison  between  two  memory  allocation  libraries  is 
presented.  Benchmark  performing  processing  similar  to 
backend of  web application  is  used.  Each benchmark  was 
repeated twice,  once with each library.  Libraries  used are 
jemalloc and  dlmalloc.  In  second  part  of  this  paper, 
benchmarks were done to show if range coding algorithms 
benefit  from  different  dynamic  memory  allocation 
techniques.

Keywords — benchmarking,  dlmalloc,  dynamic  memory 
allocation, jemalloc, malloc, range coding

I. INTRODUCTION

ERFORMANCE  of  a  memory  allocator  can  be 
benchmarked  by  measuring  the  average  or  peak 

usage  of  memory  in  a  certain  time-frame.  In  order  to 
make  a  benchmark  results  useful,  it  is  not  enough  to 
measure  the  amount  of  time  that  memory  is  being 
allocated  by  an  application.  Furthermore,  the 
organization  of  memory  can  affect  application’s 
execution time. In first part of this paper, allocators were 
compared by measuring amount of useful  work done in 
certain  amount  of  time.  Test  suite  cannot  cover  all 
possible  cases,  so an  allocator  may  behave  worse  than 
expected. Regardless, an allocator has to operate well for 
certain  amount  of  work  and  because  of  that,  it  is  very 
important  that  a  benchmark  uses  wide  variety  of 
allocation patterns.

P

Fragmentation  has  some  side-effects  regarding 
performance,  all  depending  on  application's  execution 
profile.  There  are  two  types  of  fragmentation:  internal 
and  external.  Internal  occurs  when  a  process  allocates 
more memory than it  requires.  The rest of the allocated 
memory remains unavailable to rest of the programs until 
the  process  makes  it  available,  and  that  might  happen 
only  when  that  process  terminates.  External 
fragmentation  is  usually  present  in  systems  which  are 
aiming to achieve the continuous memory allocation.

Because  of  that,  processes  are  often  allocating  and 
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freeing varying amounts of the memory,  and over time, 
memory  becomes  divided  in  the  small  pieces.  When  a 
process cannot allocate whole amount of memory it needs 
due  to  the  small  size  of  free  memory  blocks,  external 
fragmentation  occurs.  It  happens  even  though  there  is 
enough  free  memory  for  the  process.  Both  types  of 
fragmentation  have  different  impacts  on  performance, 
depending  on  nature  of  given  application  [1].  In  best 
case,  both  types  of  fragmentation  should  not  occur.  A 
memory allocator can also copy chunks of data between 
the  different  locations  in  memory,  and  that  can  also 
influences  performance  and  continuality  of  memory 
allocation.

Implementation  of  jemalloc takes  into  account  that 
virtual  memory  paging  can  cause  the  performance 
degradation. Even  simple fetching from the RAM adds 
considerable latency when compared to the cache access, 
which  then  causes  further  performance  degradation.  In 
case  when  the  work  set  is  not  cached,  general 
performance  will  be  better  if  it  is  continually  placed 
within  the  cache  blocks.  Objects  that  are  allocated  in 
close time intervals will very likely be used at the same 
time,  so  if  an  allocator  can  allocate  memory  for  such 
objects  continually,  performance  will  be  better  in  the 
long  run  [2].  Rather  than  minimising  total  memory 
consumption,  first  priority  of  jemalloc is  achieving 
continual allocation.

One  of  the  main  problems  of  SMP  systems  is  the 
resource  handling.  As  the  number  of  processors  is 
growing,  the  competition  for  resources  is  growing  too. 
When  system  contains  fewer  cores,  there  is  less 
competition,  so general  performances are higher [3].  As 
the  number  of  processors  is  increasing,  competing 
between  the  processors  causes  the  performance 
degradation, so we may say that scalability is eventually 
decreasing.

It  is  the  same  with  the  SMP  systems  where  every 
processor  has  its  own cache,  where  it  comes  to  further 
serious  problems  which  affect  an  application’s 
performance.  The basic  requirement  of those systems is 
that  cache  of  every  processor  shares  the  same  memory 
address  space.  That  means  that  data  one  processor’s 
cache can access has to be same as data other processor’s 
cache  can  access  and  so  on.  To  make  this  possible, 
memory is divided into smaller parts. Each location in the 
cache has a tag along with the index of the block address 
in main memory that has been cached. These entries are 
called cache lines or cache blocks and are located in the 
cache [4].

Cache  line  and  its  status  can  be  controlled  by  the 
processor cache, so if one processor wants to use a cache 
line, it first has to make all copies of this line that exist in 
cache  memories  of  the  other  processors  invalid.   By 
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doing this,  the processor obtains  appropriate  rights,  and 
only then, that block of data may be changed [4].

The allocation arena is a set of blocks, each of which 
consists of a data area (whose addresses are returned by 
the  allocation  functions)  immediately  preceded  by  a 
header  which  describes  the  block's  size  and  status.  In 
most  implementations,  a  block's  size  is  the  distance  in 
bytes from its header to the next block's header, and each 
size is normalised to be a multiple of a minimum internal 
alignment.  From  an  application’s  viewpoint,  this  can 
easily result in blocks with spare bytes at the end of the 
data area. [5]

If two threads are being run by a separate  processors 
and are trying to manipulate different  objects which are 
in  a  same  cache  line,  then  they  must  fight  over  the 
ownership (figure 1).

Fig. 1. two threads accessing the same cache line

This  fake  cache  dividing  line  leads  to  serious 
performance problems. One method for solving this kind 
of problems is locking of a cache line by the thread which 
manipulates  data  contained  in  it  at  given  time  [3].  So, 
when a processor  wants  to  update  a  cache  line,  first  it 
must  make  all  copies  of  this  line  which  are  located  in 
caches of the other processors unavailable to them. When 
permitted, this processor can make a safe data update.

Still,  a  problem  occurs  when  one  cache  line  is 
continuously updated by a different processors and when 
the actual  value of cache  line  is  rapidly changing from 
one  value  to  another.  This  behaviour  makes  different 
processors  read  and  edit  a  single,  certain  cache  line  in 
short time intervals, so the problem that comes up is that 
a  value  requested  by a  processor  may not  be  available 
when it  is needed.  This leads  to (so called)  cache-miss 
and the main memory must be approached, and that is not 
preferred. This is called cache sloshing [6].

Solving  techniques  for  cache  sloshing  include  using 
multiple  CPU for  allocation  and  thread  allocation  over 
hash  arena  which  contains  thread  detectors  (IDs).  In 
practice,  this aspect  is satisfying so it  became a part  of 
various  implementations  of  a  malloc  function.  In 
jemalloc, multiple arenas are used, but a dedicated hash 
arena is not used [2].

Fig. 2. Larson and Krishnan hash thread IDs for 
permanent thread assignment to arena. This is pseudo-
random process, and therefore gives no guarantee that 

arenas will be used uniformly.

Range coding is a data compression scheme that  was 
defined in 1979 by G. N. N. Martin [7].  Algorithm was 
desinged with aim to remove redundancy from a message 
in  a  digital  form.  Range  coding  is  mathematically 
equivalent  to  arithmetic  coding,  technique  which  is,  in 
contrast  to  range  coding,  encumbered  with  various 
patents.  Therefore,  range coding is widely used in open 
source communities, and telecommunication engineering.

The central concept behind range encoding is that if we 
are  given  a  large-enough  range  of  integers  and  a 
probability  estimation  for the symbols,  the initial  range 
can  be  divided  into  sub-ranges  with  sizes  that  are 
proportional  to  the  probability  of  the  symbol  they 
represent appearing. Each symbol of a message can then 
be encoded in turns, by reducing the current range down 
to  just  that  sub-range  which  corresponds  to  the  next 
symbol to be encoded. Decoder must have access to the 
same  probability  estimation  that  encoder  used,  which 
means that it can either be sent in advance, derived from 
already transferred data or, most usually, be integral part 
of both encoder and decoder.

II.BENCHMARK CONFIGURATION

To  test  and  compare  jemalloc performance  with 
dlmalloc  library, the program ebizzy was used. This is an 
open-source  application  designed  to  simulate  load  of 
common web application. Application makes great use of 
threading and there are large demands for memory, so it 
very often allocates and deallocates working memory and 
copies it concurrently between threads.

In second part  of benchmarking,  free (as in freedom) 
range  encoder  and  decoder  by  Michael  Schindler  were 
used. Source  was slightly modified  to make it  easier  to 
use external memory allocation libraries.

All tests were performed under the FreeBSD operating 
system  version  7.2,  compiled  for  64-bit  systems. 
Processor of the test configuration was Core 2 Duo ULV 
SL7100 1.2 GHz with 4MB of L2 memory. Configuration 
also had 2GB of DDR2 @ 667MHz.

In  first  benchmark  suite,  external  library  was  used 
instead  kernel  version  of  memcpy  function.  This  was 
done to eliminate  advantages  that  jemalloc  has because 
its  integration  in  kernel.  To  stimulate  memory 
fragmentation,  memory  locations  were  accessed 
randomly. In order to make better use of random memory 
chunks, binary search was used instead of linear.

Each of the benchmarks was run two times, first time 
with one physical core disabled and the second time with 
both cores enabled. The following block sizes were used 
for  allocations:  256kB,  512  kB,  1  MB.  Each  of 
benchmarks was run for 10 seconds and resulting score is 
number  of  records  processed  per  second.  Record 
processing  consists  of  reading  from  database,  data 
processing and its re-entry into the database. In addition, 
1,  2,  4,  8  and  16  threads  were  used  by  each  of  the 
benchmarks.  

In second benchmark suite, both jemalloc and dlmalloc 
versions of range encoder were fed with random data ten 
times,  mean  time  was taken,  and  difference  in  runtime 
was  measured,  along  with  mean  deviation.  After  that, 
encoder  output  was  decoded  by  decoders  compiled 
against  different  libraries,  and  again,  difference  and 
deviation  was  measured.  Process  was  repeated  three 
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times,  with encoder  input  being  200 MB, 400 MB and 
600 MB each time.

III. BENCHMARK AND RESULT EVALUATION

Results of first benchmark suite are presented in form 
of  charts.  First  chart  shows  the  results  of  benchmark 
when both cores of the processor are available, while on 
the second chart, results when just one core was available 
can  be  found.  In  both  cases,  the  allocated  blocks  were 
256 KB large.

Chart 1: results of benchmarks while using a dual core 
processor at 256 KB block size

Chart 2: results of benchmarks while using a dual core 
processor, with one available core at 256 KB block size

As it  can  be  seen  on  both  charts  above,  ebizzy  was 
processing faster on a processor with one core, while just 
one thread was running. This can be explained with scale 
of competition for resources when both cores are running. 
In  case  of  using  further  threads,  processing  was  about 
40% faster than on just one core. Compared to dlmalloc, 
jemalloc profited a bit more from more threads.

Third chart shows the results of benchmark when both 
cores of the processor are available,  while on the fourth 
chart,  results  when  just  one  core  was available  can  be 
found. In both cases,  the allocated blocks were 512 KB 
large.

Chart 3: results of benchmarks while using a dual core 
processor at 512 KB block size

Chart 4: results of benchmarks while using a dual core 
processor, with one available core at 512 KB block size

Situation is very similar as the one with smaller block 
sizes.  Again,  compared  to  dlmalloc,  jemalloc  profited 
more from more threads. In this case, like in the former, 
performance  is not  negatively  affected  when number  of 
threads is much larger than number of cores (which may 
in case of ebizzy be seen as an elevated number of clients 
who are trying to access the database).

Fifth chart shows the results of benchmark when both 
cores of the processor are  available,  while  on the  sixth 
chart,  results  when just  one core  was available  may be 
found.  In  both  cases,  the  allocated  blocks  were  1  MB 
large.

Chart 5: results of benchmarks while using a dual core 
processor at 1 MB block size

Chart 6: results of benchmarks while using a dual core 
processor, with one available core at 1 MB block size

While number of threads is not larger than number of 
cores,  situation  is  still  similar,  jemalloc  scales  slightly 
better.  However,  once  4  or  more  threads  are  used, 
difference becomes smaller.

Results  of second benchmark  suite  are  shown in two 
charts.  Seventh  chart  is  showing  difference  between 
encoders,  while  eightth  shows  how  well  decoders 
compare,  when  compiled  against  different  dynamic 
memory allocation libraries.
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Chart 7: results of encoder benchmarks

Chart 8: results of decoder benchmarks

From  these  two  graphs,  we  can  see  that  encoder  is 
profting  from  using  jemalloc,  while  decoder  behaves 
better when compiled against dlmalloc.

IV. CONCLUSION

For the purpose of this paper, ebizzy software was used 
to  benchmark  improvements  of  jemalloc  library, 
compared  to  the  previously  used  library,  dlmalloc. 
Performance  of memory  allocator  is  highly sensitive  to 
application’s  allocation  patterns,  so  definite  conclusion 
can hardly be drawn. It is difficult to predict all possible 
allocation patterns that  specific  application can use,  but 
simulators like ebizzy is can give very good overview of 
performance,  due  to  their  versatility.  This  was done  to 
give some understanding of interns of dynamic memory 
allocators,  so  we  can  have  a  clear  understanding  why 

range  encoder  or decoder  preforms better  under  certain 
conditions, if it does.

Side conclusion from this paper is that jemalloc should 
be used in applications that make heavy use of threading, 
and preferably use smaller memory blocks. If application 
uses larger memory blocks, at least 1 MB, other solutions 
should  be  investigated,  because  results  are  too close  to 
say that jemalloc is strictly better,  something else might 
perform better  depending on an application's  behaviour. 
The used benchmarks are also showing that performances 
of multi-threaded  applications  are  properly  scaling  with 
number  of processors,  and,  at  the  same time,  it  can  be 
seen that performance of single-threaded allocation hasn’t 
degraded.

Main  conclusion  is  that  jemalloc  should  be  used  for 
range  encoders,  and  dlmalloc  for  decoders.  Jemalloc 
implementation has better cache locality, and that aids a 
lot in case of encoder, due to nature of algorithm, which 
requires  a  lot  of  subranges,  and  lot  of  memory  jumps, 
while  manipulating  data.  However,  we  can  say  that 
dlmalloc is definitelly more versatile than jemalloc,  and 
therefore,  it  suits  decoder  better,  because  algorithm  is 
much more straightforward.
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