
17th Telecommunications forum TELFOR 2009 Serbia, Belgrade, November 24-26, 2009.

Abstract — Shared memory multiprocessor systems need
efficient memory allocators, primarily for parallel
programming support. In first part of this paper,
comparison between two memory allocation libraries is
presented. Benchmark performing processing similar to
backend of web application is used. Each benchmark was
repeated twice, once with each library. Libraries used are
jemalloc and dlmalloc. In second part of this paper,
benchmarks were done to show if range coding algorithms
benefit from different dynamic memory allocation
techniques.

Keywords — benchmarking, dlmalloc, dynamic memory
allocation, jemalloc, malloc, range coding

I. INTRODUCTION

ERFORMANCE of a memory allocator can be
benchmarked by measuring the average or peak

usage of memory in a certain time-frame. In order to
make a benchmark results useful, it is not enough to
measure the amount of time that memory is being
allocated by an application. Furthermore, the
organization of memory can affect application’s
execution time. In first part of this paper, allocators were
compared by measuring amount of useful work done in
certain amount of time. Test suite cannot cover all
possible cases, so an allocator may behave worse than
expected. Regardless, an allocator has to operate well for
certain amount of work and because of that, it is very
important that a benchmark uses wide variety of
allocation patterns.

P

Fragmentation has some side-effects regarding
performance, all depending on application's execution
profile. There are two types of fragmentation: internal
and external. Internal occurs when a process allocates
more memory than it requires. The rest of the allocated
memory remains unavailable to rest of the programs until
the process makes it available, and that might happen
only when that process terminates. External
fragmentation is usually present in systems which are
aiming to achieve the continuous memory allocation.

Because of that, processes are often allocating and

Darko Trivun is with the Faculty of Electrical Engineering
(Department of Control Theory and Electronics), University of Sarajevo,
Bosnia and Herzegovina (e-mail: dtrivun@etf.unsa.ba)

Alvin Huseinović is with the Faculty of Electrical Engineering
(Department of Computer Science and Informatics), University of
Sarajevo, Bosnia and Herzegovina (e-mail: ahuseinovic@etf.unsa.ba)

Merisa Huseinović is with the Faculty of Electrical Engineering
(Department of Computer Science and Informatics), University of
Sarajevo, Bosnia and Herzegovina (e-mail: mhuseinovic@etf.unsa.ba)

Arnes Durmo is with the Faculty of Electrical Engineering
(Department of Computer Science and Informatics), University of
Sarajevo, Bosnia and Herzegovina (e-mail: adurmo@etf.unsa.ba)

Novica Nosović is mentoring professor of this paper and is with the
Faculty of Electrical Engineering (Department of Computer Science and
Informatics), University of Sarajevo, Bosnia and Herzegovina (e-mail:
nnosovic@etf.unsa.ba)

freeing varying amounts of the memory, and over time,
memory becomes divided in the small pieces. When a
process cannot allocate whole amount of memory it needs
due to the small size of free memory blocks, external
fragmentation occurs. It happens even though there is
enough free memory for the process. Both types of
fragmentation have different impacts on performance,
depending on nature of given application [1]. In best
case, both types of fragmentation should not occur. A
memory allocator can also copy chunks of data between
the different locations in memory, and that can also
influences performance and continuality of memory
allocation.

Implementation of jemalloc takes into account that
virtual memory paging can cause the performance
degradation. Even simple fetching from the RAM adds
considerable latency when compared to the cache access,
which then causes further performance degradation. In
case when the work set is not cached, general
performance will be better if it is continually placed
within the cache blocks. Objects that are allocated in
close time intervals will very likely be used at the same
time, so if an allocator can allocate memory for such
objects continually, performance will be better in the
long run [2]. Rather than minimising total memory
consumption, first priority of jemalloc is achieving
continual allocation.

One of the main problems of SMP systems is the
resource handling. As the number of processors is
growing, the competition for resources is growing too.
When system contains fewer cores, there is less
competition, so general performances are higher [3]. As
the number of processors is increasing, competing
between the processors causes the performance
degradation, so we may say that scalability is eventually
decreasing.

It is the same with the SMP systems where every
processor has its own cache, where it comes to further
serious problems which affect an application’s
performance. The basic requirement of those systems is
that cache of every processor shares the same memory
address space. That means that data one processor’s
cache can access has to be same as data other processor’s
cache can access and so on. To make this possible,
memory is divided into smaller parts. Each location in the
cache has a tag along with the index of the block address
in main memory that has been cached. These entries are
called cache lines or cache blocks and are located in the
cache [4].

Cache line and its status can be controlled by the
processor cache, so if one processor wants to use a cache
line, it first has to make all copies of this line that exist in
cache memories of the other processors invalid. By

Impact of Various Memory Allocation
Techniques on Range Coding Performance

Darko Trivun, Alvin Huseinović, Merisa Huseinović, Arnes Durmo

1451

mailto:ahuseinovic@etf.unsa.ba
mailto:mhuseinovic@etf.unsa.ba
mailto:ahuseinovic@etf.unsa.ba
mailto:dtrivun@etf.unsa.ba
mailto:ahuseinovic@etf.unsa.ba

doing this, the processor obtains appropriate rights, and
only then, that block of data may be changed [4].

The allocation arena is a set of blocks, each of which
consists of a data area (whose addresses are returned by
the allocation functions) immediately preceded by a
header which describes the block's size and status. In
most implementations, a block's size is the distance in
bytes from its header to the next block's header, and each
size is normalised to be a multiple of a minimum internal
alignment. From an application’s viewpoint, this can
easily result in blocks with spare bytes at the end of the
data area. [5]

If two threads are being run by a separate processors
and are trying to manipulate different objects which are
in a same cache line, then they must fight over the
ownership (figure 1).

Fig. 1. two threads accessing the same cache line

This fake cache dividing line leads to serious
performance problems. One method for solving this kind
of problems is locking of a cache line by the thread which
manipulates data contained in it at given time [3]. So,
when a processor wants to update a cache line, first it
must make all copies of this line which are located in
caches of the other processors unavailable to them. When
permitted, this processor can make a safe data update.

Still, a problem occurs when one cache line is
continuously updated by a different processors and when
the actual value of cache line is rapidly changing from
one value to another. This behaviour makes different
processors read and edit a single, certain cache line in
short time intervals, so the problem that comes up is that
a value requested by a processor may not be available
when it is needed. This leads to (so called) cache-miss
and the main memory must be approached, and that is not
preferred. This is called cache sloshing [6].

Solving techniques for cache sloshing include using
multiple CPU for allocation and thread allocation over
hash arena which contains thread detectors (IDs). In
practice, this aspect is satisfying so it became a part of
various implementations of a malloc function. In
jemalloc, multiple arenas are used, but a dedicated hash
arena is not used [2].

Fig. 2. Larson and Krishnan hash thread IDs for
permanent thread assignment to arena. This is pseudo-
random process, and therefore gives no guarantee that

arenas will be used uniformly.

Range coding is a data compression scheme that was
defined in 1979 by G. N. N. Martin [7]. Algorithm was
desinged with aim to remove redundancy from a message
in a digital form. Range coding is mathematically
equivalent to arithmetic coding, technique which is, in
contrast to range coding, encumbered with various
patents. Therefore, range coding is widely used in open
source communities, and telecommunication engineering.

The central concept behind range encoding is that if we
are given a large-enough range of integers and a
probability estimation for the symbols, the initial range
can be divided into sub-ranges with sizes that are
proportional to the probability of the symbol they
represent appearing. Each symbol of a message can then
be encoded in turns, by reducing the current range down
to just that sub-range which corresponds to the next
symbol to be encoded. Decoder must have access to the
same probability estimation that encoder used, which
means that it can either be sent in advance, derived from
already transferred data or, most usually, be integral part
of both encoder and decoder.

II.BENCHMARK CONFIGURATION

To test and compare jemalloc performance with
dlmalloc library, the program ebizzy was used. This is an
open-source application designed to simulate load of
common web application. Application makes great use of
threading and there are large demands for memory, so it
very often allocates and deallocates working memory and
copies it concurrently between threads.

In second part of benchmarking, free (as in freedom)
range encoder and decoder by Michael Schindler were
used. Source was slightly modified to make it easier to
use external memory allocation libraries.

All tests were performed under the FreeBSD operating
system version 7.2, compiled for 64-bit systems.
Processor of the test configuration was Core 2 Duo ULV
SL7100 1.2 GHz with 4MB of L2 memory. Configuration
also had 2GB of DDR2 @ 667MHz.

In first benchmark suite, external library was used
instead kernel version of memcpy function. This was
done to eliminate advantages that jemalloc has because
its integration in kernel. To stimulate memory
fragmentation, memory locations were accessed
randomly. In order to make better use of random memory
chunks, binary search was used instead of linear.

Each of the benchmarks was run two times, first time
with one physical core disabled and the second time with
both cores enabled. The following block sizes were used
for allocations: 256kB, 512 kB, 1 MB. Each of
benchmarks was run for 10 seconds and resulting score is
number of records processed per second. Record
processing consists of reading from database, data
processing and its re-entry into the database. In addition,
1, 2, 4, 8 and 16 threads were used by each of the
benchmarks.

In second benchmark suite, both jemalloc and dlmalloc
versions of range encoder were fed with random data ten
times, mean time was taken, and difference in runtime
was measured, along with mean deviation. After that,
encoder output was decoded by decoders compiled
against different libraries, and again, difference and
deviation was measured. Process was repeated three

1452

times, with encoder input being 200 MB, 400 MB and
600 MB each time.

III. BENCHMARK AND RESULT EVALUATION

Results of first benchmark suite are presented in form
of charts. First chart shows the results of benchmark
when both cores of the processor are available, while on
the second chart, results when just one core was available
can be found. In both cases, the allocated blocks were
256 KB large.

Chart 1: results of benchmarks while using a dual core
processor at 256 KB block size

Chart 2: results of benchmarks while using a dual core
processor, with one available core at 256 KB block size

As it can be seen on both charts above, ebizzy was
processing faster on a processor with one core, while just
one thread was running. This can be explained with scale
of competition for resources when both cores are running.
In case of using further threads, processing was about
40% faster than on just one core. Compared to dlmalloc,
jemalloc profited a bit more from more threads.

Third chart shows the results of benchmark when both
cores of the processor are available, while on the fourth
chart, results when just one core was available can be
found. In both cases, the allocated blocks were 512 KB
large.

Chart 3: results of benchmarks while using a dual core
processor at 512 KB block size

Chart 4: results of benchmarks while using a dual core
processor, with one available core at 512 KB block size

Situation is very similar as the one with smaller block
sizes. Again, compared to dlmalloc, jemalloc profited
more from more threads. In this case, like in the former,
performance is not negatively affected when number of
threads is much larger than number of cores (which may
in case of ebizzy be seen as an elevated number of clients
who are trying to access the database).

Fifth chart shows the results of benchmark when both
cores of the processor are available, while on the sixth
chart, results when just one core was available may be
found. In both cases, the allocated blocks were 1 MB
large.

Chart 5: results of benchmarks while using a dual core
processor at 1 MB block size

Chart 6: results of benchmarks while using a dual core
processor, with one available core at 1 MB block size

While number of threads is not larger than number of
cores, situation is still similar, jemalloc scales slightly
better. However, once 4 or more threads are used,
difference becomes smaller.

Results of second benchmark suite are shown in two
charts. Seventh chart is showing difference between
encoders, while eightth shows how well decoders
compare, when compiled against different dynamic
memory allocation libraries.

1453

Chart 7: results of encoder benchmarks

Chart 8: results of decoder benchmarks

From these two graphs, we can see that encoder is
profting from using jemalloc, while decoder behaves
better when compiled against dlmalloc.

IV. CONCLUSION

For the purpose of this paper, ebizzy software was used
to benchmark improvements of jemalloc library,
compared to the previously used library, dlmalloc.
Performance of memory allocator is highly sensitive to
application’s allocation patterns, so definite conclusion
can hardly be drawn. It is difficult to predict all possible
allocation patterns that specific application can use, but
simulators like ebizzy is can give very good overview of
performance, due to their versatility. This was done to
give some understanding of interns of dynamic memory
allocators, so we can have a clear understanding why

range encoder or decoder preforms better under certain
conditions, if it does.

Side conclusion from this paper is that jemalloc should
be used in applications that make heavy use of threading,
and preferably use smaller memory blocks. If application
uses larger memory blocks, at least 1 MB, other solutions
should be investigated, because results are too close to
say that jemalloc is strictly better, something else might
perform better depending on an application's behaviour.
The used benchmarks are also showing that performances
of multi-threaded applications are properly scaling with
number of processors, and, at the same time, it can be
seen that performance of single-threaded allocation hasn’t
degraded.

Main conclusion is that jemalloc should be used for
range encoders, and dlmalloc for decoders. Jemalloc
implementation has better cache locality, and that aids a
lot in case of encoder, due to nature of algorithm, which
requires a lot of subranges, and lot of memory jumps,
while manipulating data. However, we can say that
dlmalloc is definitelly more versatile than jemalloc, and
therefore, it suits decoder better, because algorithm is
much more straightforward.

REFERENCES

1) Mamagkakis S, Baloukas C, Atienza D, Catthoor F, Soudris D,
Mendias J M, “Reducing Memory Fragmentation with
Performance-optimized Dynamic Memory Allocators in Network
Applications”, Elsevier, 2005.

2) Jason Evans, "A Scalable Concurrent malloc Implementation for
FreeBSD", FreeBSD.org, 2005.

3) Larson P, Krishnan M, "Memory allocation for long-running server
applications", International Symposium on Memory Management
(ISSM), 176–185, 1998

4) Altmeyer S, Burguiere C, “A new Notion of Useful Cache Block to
Improve the Bounds of Cache-Related Preemption Delay”, ECRTS
Dublin, 2009

5) Frantisek Franek, "Memory as a Programming Concept in C and
C++", Cambridge University Press, November 17, 2003

6) Kadayif I, Kandemir M, Chen G, “Studying interactions between
prefetching and cache line turnoff”, Shangai, 2005.

7) G. N. N. Martin, “Range encoding: an algorithm for removing
redundancy from a digitized message”, 1979

1454

	I. Introduction
	II. Benchmark Configuration
	III. Benchmark and result evaluation
	IV. Conclusion

