
17th Telecommunications forum TELFOR 2009 Serbia, Belgrade, November 24-26, 2009.

Abstract — This paper is inspired by the lack of detailed

wireless sensor network (WSN) simulator surveys. We

examine four WSN simulators: ns-2, Castalia (OMNeT++

based), TOSSIM, and COOJA/MSPSim, and define a set of

criteria to evaluate and compare the simulators. We provide

short descriptions of simulators and tabular comparison

based on the criteria. Since none of the simulators under

survey is a universal solution, rough guidelines on which

simulator to use in particular situation are given.

Keywords — Wireless Sensor Networks, Simulation

I. INTRODUCTION

IRELESS sensor network (WSN) is composed of
spatially distributed autonomous devices using

sensors to cooperatively monitor some phenomenon. These
devices, called sensor nodes or motes, are small-sized,
low-cost, low-power, embedded systems built around a
low-power microcontroller and equipped with one or more
sensors, radio transceiver and a power source. WSN have a
wide variety of applications such as battlefield
surveillance, target tracking, industrial process monitoring,
environment and habitat monitoring, precision agriculture,
and disaster area monitoring.

Use of simulators is necessary when developing or
researching in the field of WSN. Reasons for this are
numerous. Manufacturers have not achieved expected low
costs for sensor nodes yet, so experiments on a real-world
WSN (which could consist of hundreds or thousands of
nodes) are expensive [1]. It is more cost-effective to use
simulation, except for final stages of development, when
real-world tests are needed. Distributed nature and large
number of sensor nodes make debugging a WSN very
complicated task. Again, simulation can be used to detect
and correct many bugs and issues before testing on a real
system. Some applications of WSN require operation in
very specific environments (e.g. volcano activity
monitoring). Experimenting in those environments could
be expensive or dangerous, which is another reason for
using simulation [2]. Finally, simulation enables
experiments under controlled conditions. For example, it is
possible to create specific scenarios that are hard to carry
out in reality or repeat the same scenario multiple times
with different parameters of system under test.

Milos Jevtić, Nikola Zogović, Goran Dimić, Institute Mihajlo Pupin,

Volgina 15, 11050 Belgrade, Serbia; (e-mail:
milos.jevtic@institutpupin.rs, nikola.zogovic@institutpupin.rs,
goran.dimic@institutepupin.com)

There are many WSN simulators currently available,
and choosing the right one for a given application is very
important. To make this choice easier, we conduct a survey
of several simulators that we find significant and
interesting. In this paper, we present the results of our
survey. In the second section, we present our methodology
and selected criteria. In the third section, we describe and
compare simulators according to the methodology and
criteria. In the fourth section, we further discuss our
findings, and in the fifth section, we conclude the paper.

II. METHODOLOGY AND CRITERIA

A survey similar to ours was conducted in [1], but some
of the presented information is outdated. Survey presented
in [2] encompassed large number of WSN simulators,
without entering into details. In contrast to that, we make a
more detailed survey of four simulators.

We define a set of criteria to evaluate and compare the
selected simulators and entitle these criteria evaluation

criteria. The criteria are:
1. Level of details – There are three types of simulators.

The first type is a generic simulator, which focuses on
high-level aspects of WSN, such as networking, sensing,
and data processing while operating system (OS) and
hardware architecture of sensor nodes are not considered.
This type of simulators is useful for evaluation of high-
level protocols and algorithms. The second type is a code

level simulator that uses the same code in simulation as in
real sensor node. Application code and OS code (device
drivers have to be altered, because there are no real
hardware devices) are compiled for the machine that is
running the simulator [3] while hardware architecture of
sensor nodes is not taken into account. These simulators
can be used to find bugs that are not related to timing or
hardware architecture [3]. The third type is a firmware

level simulator, which uses hardware emulation to execute
deployable application and OS code compiled for the
target platform. Using this kind of simulators, most types
of bugs can be found, and timing-sensitive software can be
tested [3].

2. Timing – In discrete event simulators, events that
affect state of the system are chronologically ordered into
event queue, and event scheduler executes them one by
one. Continuous simulators are concerned with modeling a
set of equations that represent system over time [4].

3. Software license – A simulator can be proprietary, or
have one of the free software/open source licenses.

4. Popularity – Number of hits on Google with

Evaluation of
Wireless Sensor Network Simulators

Miloš Jevtić, Nikola Zogović, Member, IEEE and Goran Dimić, Member, IEEE

W

1303

“Wireless Sensor Network <simulator name>” query
measures popularity.

5. Simulator platform – OS that simulator runs on.
6. WSN platforms – Sensor nodes/platforms that can be

simulated.
7. Graphical User Interface (GUI) support – Is it

available and how useful it is?
8. Available models and protocols – They are examined

separately for each important layer or segment of WSN:
radio propagation, physical (PHY) layer, medium access
control (MAC) layer, network layer, transport layer and
sensing.

9. Energy consumption model – Is it available and what
level of detail it has?

Sources of information for this survey are scientific
papers, vendor web sites and available documentation.

III. SIMULATORS

Simulators for this survey were selected using two
criteria. The first is availability of simulator free of charge
for academic use. The second is whether a vendor actively
develops and supports a simulator or not. Based on these
criteria, we have selected four simulators: ns-2, OMNeT++
based Castalia, TOSSIM and COOJA/MSPSim. The logic
behind this choice is: ns-2 is the most popular network
simulator; OMNeT++ has growing popularity and modular
structure, which gives it potential to grow, define more
details, and optimize; TOSSIM is part of TinyOS, the most
widely used OS for WSN; COOJA/MSPSim, besides
having some very interesting features, is part of Contiki
OS, with growing popularity.

We compare selected simulators based on evaluation
criteria defined in previous section. Results of the
comparison are presented in Table 1. We first give short
descriptions of simulators in the following subsections.

A. ns-2

ns-2 [5] is the most widely used WSN simulator [1]. It
began as a general network simulator, and support for
mobile ad-hoc wireless networks was added later [2]. It is
a generic, discrete event simulator.

ns-2 is an object-oriented (OO) simulator, written in
C++, with an OTcl interpreter as a front-end [5].
Simulation kernel, models, protocols and other
components are implemented in C++, but are also
accessible from OTcl. OTcl scripts are used for simulator
configuration, setting up network topology, specifying
scenarios, recording simulation results etc. Typical ns-2
OTcl script for wireless simulation begins with
configuration command, which is used to specify PHY,
MAC and routing protocol, radio propagation and antenna
model, topology etc. The next step is creation of mobile
nodes. Node movement and network traffic patterns are
usually defined in separate files [5]. Tools for generating
these files are provided.

Very simple energy consumption model is used. Each
node starts with initial amount of energy. Amounts of
energy spent for packet transmission and reception are also
defined. After receiving or transmitting packet, node’s

energy is decremented for a corresponding amount. When
node’s energy reaches zero, node cannot send or receive
packets any more [5].

Tool called nam enables graphical visualization of
simulation flow. During simulation, ns-2 generates special
nam trace file. OTcl script is used to select what
information should be recorded in this file. nam uses the
data stored in trace file to visualize network topology and
animate packet flow. A tape recorder style user interface is
used to control the simulation replay.

Using ns-2 as a WSN simulator has some drawbacks.
First, sensing model does not exist. Second, packet formats
and MAC protocols are different from those found on
typical WSN platforms [1]. Third, energy model is too
simple.

However, ns-2 is extensible and several third party add-
ons that address some of the mentioned drawbacks have
been created. Mannasim [6] for example adds a sensing
model, several application models, LEACH routing
protocol, Mica2 PHY model, etc. A GUI tool that
automatically creates OTcl scripts is also provided.

B. OMNeT++ and Castalia

Another popular discrete event simulator is OMNeT++
[7]. It is not a WSN simulator, nor even a network
simulator, but a rich simulation platform on which various
independent groups can build their own simulators [7].

An OMNeT++ based simulator is built from elements
called modules. Simple module is a basic unit of execution
and is written in C++. Compound module consists of other
modules (simple or compound) that are linked by
connections. Top-level compound module is called
network module. Modules communicate via messages that
are sent via connections or directly from module to
module. Topology (i.e. structure of compound modules
and network module) is defined using declarative language
called NED. Scenarios and various simulation parameters
are defined in INI files, and thus are separated from
models and topology [7].

OMNeT++ includes an integrated development
environment (IDE) that enables C++ programming and
debugging of simple modules, as well as graphical and
textual editing of NED files. Tkenv is a GUI tool for
monitoring simulation flow, featuring animation of
message flow on network charts, visualizing node state
changes, displaying debug output of modules or module
groups, viewing and manually changing state of simulation
objects etc. Tools for visualizing dynamic interactions
among modules and for results analysis and visualization
are also provided [7].

Example of a WSN simulator built on top of OMNeT++
is Castalia [8]. It is a generic simulator intended for the
first order validation of high-level algorithms before
moving to a specific sensor platform.

In Castalia, sensor nodes are implemented as compound
modules, consisting of sub-modules that represent, for
instance, network stack layers, application, and sensor.
Node modules are connected to wireless channel and
physical process modules [8].

1304

TABLE 1: SIMULATOR COMPARISON

Simulator ns-2
Castalia (based on

OMNeT++)
TOSSIM COOJA/MSPSim

Level of details generic generic code level all levels

Timing discrete event discrete event discrete event discrete event

Software License GNU GPL Academic Public License BSD BSD

Popularity 780000 11900 9810 3010

Simulator platform
FreeBSD, Linux, SunOS,

Solaris, Windows (Cygwin)
Linux, Unix, Windows

(Cygwin)
Linux, Windows

(Cygwin)
Linux

WSN platforms n/a n/a MicaZ Tmote Sky, ESB/2

GUI support
monitoring of simulation

flow

monitoring of simulation
flow, C++ development,

topology definition, result
analysis and visualization

none yes

wireless
channel

free space, two-ray ground
reflection, shadowing

lognormal shadowing,
experimentally measured

path loss map, packet
reception rates map,

temporal variation, unit disk

lognormal shadowing

multi-path ray-tracing
with support for

attenuating obstacles, unit
disk

PHY Lucent WaveLan DSSS CC1100, CC2420 CC2420 no data

MAC

802.11 (several
implementations), preamble

based TDMA (still at a
preliminary stage)

TMAC, SMAC, Tunable
MAC (can approximate

BMAC, LPL, etc)

standard TinyOS 2.0
CC2420 stack

X-MAC, LPP,
NULLMAC

network
DSDV, DSR, TORA,

AODV
Simple Tree, Multi-path

Rings
no data no data

transport UDP, TCP none no data no data A
va

il
ab

le
 m

od
el

s
an

d
pr

ot
oc

ol
s

sensing
random process with

Mannasim add-on
generic moving time-varying

physical process
no data no data

Energy consumption
model

yes yes
with PowerTOSSIM z

add-on
yes

PHY module models a generic low power radio. It

supports multiple states with different power
consumptions, multiple levels of transmission power,
carrier sensing and modulations. PSK and FSK
modulations are supported, while custom modulation can
be modeled by defining SNR-BER curve [8].

There are two MAC modules available: first implements
TMAC and SMAC, while second can approximate several
protocols but supports only broadcast communication.
PHY and MAC modules can be controlled from
application module [8].

Sensed phenomenon is modeled with a generic physical
process that can move and change its value while effects of
diffusion are also taken into consideration. Sensor noise
and bias are modeled, too. Energy model is very simple,
comparable to one used in ns-2.

C. TOSSIM

A typical example of a code level WSN simulator is
TOSSIM [9], a part of the standard TinyOS [10]
distribution. TOSSIM enables simulation of entire TinyOS
applications by replacing few low-level components with
simulation implementations. It is a discrete event
simulator, where simulation events represent hardware
interrupts, high-level system events and posted tasks [9].

TinyOS application and TOSSIM specific software
modules are compiled and linked into a software library.
Python interpreter can be used with this library to define
topology, configure and run simulation etc. Alternatively,
C++ application linked to the library can be used instead of

Python. Python approach is easier enabling dynamic
interaction with simulation and inspection of variables in a
running TinyOS program. C++ does not allow variable
inspection, but is faster and thus better suited for high
performance simulations [9].

Wireless channel model is based on defining
propagation loss for each pair of nodes, in both directions.
Loss values can be obtained from real-world measurements
or by applying a theoretical model. A tool that calculates
loss values for given topology using lognormal shadowing
model is provided. TOSSIM does not provide a specific
PHY model, but provides several low-level primitives that
can express a wide range of radios and their behavior. By
default, CC2420 PHY is simulated. RF noise and
interference from other nodes and outside sources are also
simulated. Closest Pattern Matching (CPM) algorithm is
used to analyze noise trace and create a statistical model
from it. Then, this model is used for noise and interference
simulation [9].

TOSSIM has three shortcomings. First, all simulated
nodes run the same application code. Second, TOSSIM
does not model energy consumption, though there is an
add-on PowerTOSSIM z [11] that corrects this problem.
Third, there is a lack of decent documentation.

D. COOJA/MSPSim

COOJA [12] and MSPSim [13] are WSN simulators
included in Contiki [14] distribution. MSPSim can be
integrated into COOJA, forming COOJA/MSPSim.

1305

MSPSim is a firmware level simulator for WSN
platforms based on Texas Instruments MSP430
microcontroller. It combines cycle accurate interpretation
of CPU instructions with discrete event simulation of all
other components. Some components (such as A/D
converter) require cycle accurate timing, while other
components (such as radio transceiver) do not. Therefore,
two event queues are utilized, one for events based on
clock cycles, and the other one for events based on
simulation time.

MSPSim has debugging capabilities such as break
points, watches, logging, and single stepping. Statistics,
e.g. how much time a component spent in different
operating modes, are also provided, which can be useful
when investigating power consumption.

COOJA is primarily a code level simulator for networks
consisting of nodes running Contiki OS. Nodes with
different simulated hardware and different on-board
software may co-exist in the same simulation. Code level
simulation is achieved by compiling Contiki core, user
processes and special simulation glue drivers into object
code native to the simulator platform, and then executing
this object code from COOJA. Since COOJA is a Java
application, all interaction with compiled Contiki code is
done through Java Native Interface (JNI). Firmware level
simulation can be achieved by compiling Contiki core and
user processes into target platform object code that can be
executed in MSPSim. COOJA is also able to simulate non-
Contiki nodes, whose functionality is implemented in Java,
and act as a generic WSN simulator.

COOJA/MSPSim can simulate sensor nodes at all three
levels of details. In addition, nodes simulated at different
levels of details can co-exist and interact in the same
simulation. This feature is called cross-level simulation
and is one of the highlights of COOJA/MSPSim.

IV. DISCUSSION

Data presented in previous section enable us to compare
simulators and give rough guidelines for their usage.

ns-2 and Castalia are generic WSN simulators and
should be used for evaluation of high-level algorithms,
protocols and applications before moving to a specific
platform.

ns-2 is the most widely used WSN simulator. However,
it relies on third party add-ons to provide WSN specific
features such as MAC protocols and sensing models.
Mannasim is the only such add-on that is currently
available, and it is not clear whether it is still developed.

Castalia is built on top of OMNeT++ from which it
inherits hierarchical architecture, strong GUI and IDE
support, clear separation of simulation kernel, models,
topology and scenarios. Castalia also provides realistic
models of wireless channel and PHY, and above-average
sensing model. Castalia is in the state of active
development, but it has not made larger impact so far.

TOSSIM is suitable for simulating nodes that run
TinyOS.

COOJA/MSPSim is the best choice for development of
Contiki based WSN. Theoretically, COOJA/MSPSim could
be used in multiple development phases. In first phase,
high-level concepts would be validated using only Java
nodes. Then, Contiki code would be written and partly
tested by using code level simulation. Finally, firmware
level simulation would be used for thorough testing.

V. CONCLUSION

We examine four WSN simulators: ns-2, Castalia
(OMNeT++ based), TOSSIM, and COOJA/MSPSim, and
define a set of criteria to evaluate and compare the
simulators. Simulators are compared based on the criteria,
and comparison results are presented in tabular form. In
addition to that, short descriptions of simulators are
provided. Since none of the simulators under survey is a
universal solution, we give rough guidelines on which
simulator to use in particular situation.

REFERENCES
[1] D. Curren, “A survey of simulation in sensor networks”, University

of Binghamton project report for subject CS580.
[2] M. Mekni, B. Moulin, "A survey on sensor webs simulation tools",

Proceedings of the 2008 Second International Conference on

Sensor Technologies and Applications, 2008, pp. 574-579.
[3] J. Eriksson, “Detailed simulation of heterogeneous wireless sensor

networks,” Licentiate thesis, Department of Information
Technology, Uppsala University, May 2009.

[4] R. McHaney, Computer simulation: a practical perspective. San
Diego, CA, USA: Academic Press Professional, 1991

[5] K. Fall and K. Varadhan, “The ns manual”, User’s manual, UC
Berkeley, LBL, USC/ISI, and Xerox PARC, January 2009.

[6] Mannasim Home Page, http://www.mannasim.dcc.ufmg.br
(accessed on June 2009)

[7] A. Varga, R. Hornig, “An overview of the OMNeT++ simulation
environment”, Proceedings of the 1st International Conference on

Simulation Tools and Techniques for Communications, Networks

and Systems & Workshops, Marseille, France, 2008.
[8] A. Boulis, “Castalia, a simulator for wireless sensor networks and

body area networks, version 2.2”, User’s manual, NICTA, August
2009.

[9] TOSSIM, From TinyOS Documentation Wiki,
http://docs.tinyos.net/index.php/TOSSIM (accessed on Sept. 2009)

[10] P. Levis et al, “TinyOS: an operating system for sensor networks”,
in Ambient Intelligence, W. Weber, J. M. Rabaey and E. Aarts, Ed.
Springer Berlin Heidelberg, 2005, pp. 115-148.

[11] E. Perla et al, “PowerTOSSIM z: realistic energy modelling for
wireless sensor network environments,” Proceedings of the 3rd

ACM workshop on Performance monitoring and measurement of

heterogeneous wireless and wired networks, Vancouver, British
Columbia, Canada, 2008, pp. 35-42.

[12] F. Österlind et al, “Cross-level sensor network simulation with
COOJA,” Proceedings of the First IEEE International Workshop

on Practical Issues in Building Sensor Network Applications,
Tampa, Florida, USA, 2006.

[13] J. Eriksson et al, “MSPSim - an extensible simulator for MSP430-
equipped sensor boards,” Proceedings of the European Conference

on Wireless Sensor Networks (EWSN), Poster/Demo session, Delft,
The Netherlands, 2007.

[14] A. Dunkels, B. Gronvall, T. Voigt, “Contiki - A lightweight and
flexible operating system for tiny networked sensors,” Proceedings

of the 29th Annual IEEE International Conference on Local

Computer Networks, 2004, pp. 455-462.

1306

