
17th Telecommunications forum TELFOR 2009 Serbia, Belgrade, November 24-26, 2009.

I. INTRODUCTION

Abstract — We propose in this paper a general framework

for an integrated End-to-End Testing of IT Architecture and
Applications using the simultaneous application of
combinatorial testing and virtualization. Combinatorial
testing methods are often applied in cases of the configuration
testing. Virtualization, in the process of testing, is based on
setting the necessary environment to multiple virtual
machines, which run on one or in smaller groups of physical
computers, which are: reduce the cost of equipment and
related resources, reduce the time required to manage the
testing process, and favours raising removal of test
infrastructure. Together, combinatorial testing and
virtualization presents practical approach to improving
process of testing, through the balancing quality, cost and
time.

Key-Words — Combinatorial testing, Environment
Virtualization, Software Testing, Virtual Mashines.

ESTING is a crucial step in the development of a
software-intensive system, as it checks the compliance

of a system to the end user requirements [1]. The
development of software testing systems must be
performed in effective and efficient manner. It is easy to
see that an effective testing is a very good indicator of the
quality product and efficient testing procedure to ensure
the faster development cycle that is an imperative
requirement for large organization. The prime objective of
the System Testing is to cover all forms of the testing
techniques related to systems to ensure the successful
development and application of software and technology.
Software testing involves the process of detecting software
discrepancies so that they can be corrected before they are
installed into a live environment supporting operational
business units. To better support this complex task of
software-testing, this study proposes identifying and
applying a general framework for an integrated End-to-
End Testing of IT Architecture and Applications using the
simultaneous application of combinatorial testing and
virtualization.approach to software testing. System testing
is an integral, costly, and timeconsuming activity in the

This work was supported in part by the Ministry of Science and
Technological Development of the Republic of Serbia under Project No.
TR-13018..

Lj. R. Lazić, Državni Univerzitet, Novi Pazar, (telefon: 381-64-
6666706; e-mail: llazic@np.ac.yu).

software development life cycle. In addition, because
testing involves running the system being tested under a
variety of configurations and circumstances, automation of
execution-related activities offers another potential source
of savings in the testing process.

In this paper, we consider a problem that arises in black
box testing: generating small test suites (i.e., sets of test
cases) where the combinations that have to be covered are
specified by input-output parameter relationships of a
software system. That is, we only consider combinations of
input parameters that affect an output parameter, and we
do not assume that the input parameters have the same
number of values. To solve this problem, we propose
interaction testing, particularly an Orthogonal Array
Testing Strategy (OATS) as a systematic, statistical way of
testing pair-wise interactions [1]. In software testing
process (STP), it provides a natural mechanism for testing
systems to be deployed on a variety of hardware and
software configurations. The combinatorial approach to
software testing uses models to generate a minimal number
of test inputs so that selected combinations of input values
are covered.
The paper shows that the combinatorial testing and
virtualization together can dramatically improve the
process of testing. The Web application example points
the way how to use virtualization to cover a wide range of
test environments and how to obtain the configuration
testing to be more effective.

II. FRAMEWORK FOR AN INTEGRATED END-TO-END
TESTING OF IT ARCHITECTURE AND APPLICATIONS

Today’s companies and organizations are increasingly
dependent on the success of the distributed online
applications that they deploy. These applications provide a
multitude of functionality, ranging from delivering
products and services directly to customers to facilitating
internal communication. Given the importance of these
applications, they usually undergo rigorous testing before
their deployment.

However, they are only one component of the big
picture. If the underlying infrastructure (e.g. the
application server) is unavailable, users will not be able to
access the desired services provided by these applications
no matter how robust the applications are. What
infrastructure support do enterprise applications need? In
our view, they need support from at least four categories of

Orthogonal Array and Virtualization as a
Method for End-to-End Testing of IT

Architecture and Applications
Ljubomir Lazić, Member, WSEAS

T

1272

infrastructure components: hardware equipment, operating
systems, middleware, and network connectivity.

Typical hardware equipment on enterprise networks
includes servers, workstations, load balancers, switches,
routers, and firewalls. Operating systems run on some of
the hardware equipment, e.g. servers and routers.
Middleware includes the non-OS software between the
applications and hardware, such as application containers
and messaging service.

Network connectivity among the hardware equipment
supports the communication between end users and
applications. Figure 1 shows a typical enterprise
infrastructure.

 Fig. 1. A Typical Multi-Tier IT Architecture Today

Given the complexity of large-scale enterprise

infrastructures and the interdependencies between
components, infrastructure failures could occur during the
deployment and operation of an application. In fact, many
failures in the delivery of online services stem from the
issues of the underlying infrastructure such as server
failures and configuration errors. In practice, test beds
usually have a much smaller scale and complexity than the
deployed infrastructure due to the cost of setting up and
managing the tested. To address the deficiencies of
existing infrastructure testing tools, our project aims to
construct a prototype testing environment and develop the
associated tools to evaluate the reliability and performance
of large-scale enterprise infrastructures [2-4].

Our framework, Integrated and Optimized Software
Testing Process - IOSTP [1], has two main components:
(1) a methodology to build a virtual test bed that can
accurately emulate any infrastructure topology and
simulate failures, attacks and other types of stresses on the
infrastructure to identify defects and bottlenecks; and (2) a
optimization model and a tool to automatically generate
different test scenarios on the model. We are taking the
following steps to build IOSTP.

System testing is testing conducted on a complete,
integrated system to evaluate the system's compliance with
its specified requirements. System testing falls within the
scope of black box testing, and as such, should require no
knowledge of the inner design of the code or logic.

System testing is actually done to the entire system
against the Functional Requirement Specification(s) (FRS)
and/or the System Requirement Specification (SRS).
Moreover, the system testing is an investigatory testing
phase, where the focus is to have almost a destructive

attitude and test not only the design, but also the behavior
and even the believed expectations of the customer. It is
also intended to test up to and beyond the bounds defined
in the software/hardware requirements specification(s).

The following examples are different types of testing
that should be considered during System Testing:

• Functional testing
• Usability testing
• Performance testing (Load, Volume, Stress)
• Compatibility testing
• Security testing
• Smoke testing
• Exploratory/Adhoc testing
• Regression testing
• Reliability testing
• Recovery testing
• Installation testing
• Accessibility
The challenge for developers, QA teams, and

management alike is how to speed up their testing
processes and increase accuracy and completeness -
without breaking their already tight budgets. In the age of
accelerating product lifecycles and pressures on reducing
the cost, the impact of traditional approach to testing has
had a serious impact on IT organizations. The business
climate of today is such that IT organizations are asked to
do more with fewer resources and without any significant
reduction in the quality of the product that is being
delivered. When IT organizations make attempts to cut on
the cost, Software Testing is often the first item that would
be cut.

By implementing automated testing, companies can
dramatically increase both the speed and accuracy of their
testing processes, providing a higher return on investment
(ROI) from software projects while dramatically cutting
risk.

IOSTP follows FURPSSI (Functionality, Usability,
Reliability, Performance, Security, Scalability and
Installation & Compatibility) model for System Testing.
There is no question that rigorous functional testing is
critical to successful application development. By
automating key elements of functional testing, companies
can meet aggressive release schedules, test more
thoroughly and reliably, verify that business processes
function correctly, and ultimately generate higher revenue
and customer satisfaction from their online operations. A
strategic approach in developing a test automation
framework using tools and methodologies will improve the
test coverage in regression cycles and reduce the test effort
in subsequent release cycles as depicted in Fig. 2.

III. COMBINATORIAL TESTING - ORTHOGONAL ARRAY
TESTING STRATEGY (OATS) AND TECHNIQUES

Testing a software system requires the creation of test
cases, which contain values for input parameters and the
expected results. Exhaustive testing for all of the possible
combinations of parameters, in most cases it is not
possible, it is not feasible, or the cost is out of the available

1273

budget. The main goal of using different methods and
techniques of testing is to create a smaller number of
combinations of parameters and their values, which will be
tested.

Fig. 2. The IOSTP's Test Automation Process (TAP) for

End-To-End Architecture Testing

The OATS provides representative (uniformly

distributed) coverage of all variable pair combinations.
This makes the technique particularly useful for integration
testing of software components. It is also quite useful for
testing combinations of configurable options (such as a
web page that lets the user choose the font style,
background colour, and page layout). As an example of the
benefit of using the OATS technique over a test set that
exhaustively tests every combination of all variables,
consider a system that has four options, each of which can
have three values. The exhaustive test set would require
81 test cases (3 x 3 x 3 x 3 or the Cartesian product of the
options). The test set created by OATS has only nine test
cases, yet tests all of the pair-wise combinations. The
OATS test set is only 11% as large at the exhaustive set
and will uncover most of the interaction bugs. It covers
100% (9 of 9) of the pair-wise combinations, 33% (9 of
27) of the three-way combinations, and 11% (9 of 81) of
the four-way combinations. What degree of interaction
occurs in real system failures? Within the NASA database
application, for example, 67 percent of the failures were
triggered by only a single parameter value, 93 percent by
two-way combinations, and 98 percent by three-way
combinations. The detection-rate curves for the other
applications studied are similar, reaching 100 percent
detection with four- to six-way interactions. An orthogonal
array is a balanced two-way classification scheme used to
construct balanced experiments when it is not practical to
test all possible combinations.

Definition: Orthogonal array O(ρ, k, n, d)
• An orthogonal array is denoted by O(ρ, k, n, d),

where:
• ρ is the number of rows in the array. The k-tuple

forming each row represents a single test
configuration, and thus ρ represents the number
of test configurations.

• k is the number of columns, representing the
number of parameters.

• The entries in the array are the values 0, …, n–1,
where n = f(n0, …, nk-1). Typically, this means
that each parameter would have (up to) n

values.
• d is the strength of the array.

The OATS provides representative (uniformly

distributed) coverage of all variable pair combinations.
This makes the technique particularly useful for:

• integration testing of software components,
• testing combinations of configurable options

(such as a web page that lets the user choose
the font style, background colour, and page
layout).

Example: For n variables with v values, k-way
combinations, Number of combinations for all
combibnations is:

() kn
kComb v⋅=ρ (1)

The OATS method provides much lower number of
combinations for k=2 way interaction, ie. pair-wise
interaction of maximum No. of tests as:

max
2

max
2 log vvnOATS +=ρ (2)

In a specific example of a 12 variables: 7 Boolean, two
3-value, one 4-value, two 10-value in a typical test
configuration for k-way interaction requires corresponding
number of test combinations as shown in next Table:

k # test cases

2-way 100

3-way 405

4-way 1,375

5-way 4,220

6-way 10,902

IV. VIRTUALIZATION PROPERTIES AND ADVANTAGES
Virtualization allows that more of the software

environments, which in this case are called virtual
machines (VMs), could be physically executed at the same
time, at only one physical computer (host), sharing the
same hardware resources among them. Communication
between host and virtual machine is provided by the
software, generally called: the monitor, or hypervisor,
which can be run directly on the physical computer, or may
be a layer between the host operating system and virtual
machines. There are several virtualization approaches. It is
considered that the native virtualization and the
paravirtualization are the best for software testing [2] [3].
The most important advantages of using virtual machines
are: reduction of costs; isolation of applications, easier
testing, standardization of testing and portability. In
addition, tested software accepts them as separate
machines. Also, in the case of the crash of some of the
virtual machine, due to applicable error or OS error, other
virtual machines will continue to run, keeping the
functionality of other parts of the system, as shown in Fig.
3. While VMs benefits all sound ideal, virtual machines do
have two main drawbacks: they share physical resources

1274

with the host and any other running virtual machines, and
they carry some processing overhead. So it could not be
expected the same performance from a virtual machine as
do from a physical one.

Fig. 3. Typical VMs test configuration

V. APPLICATION - CASE STUDY
An example was the Web applications testing on

different platforms, in order to check whether the request is
fulfilled: "Web application can be used by different clients
(Web browser), different customized and ran on different
operating systems" [4].

In this case, only the client side and a combination of
OS, web browser, web browser settings and defined
localization in the role of the platform, was considered.
Execute applications on the Web server is done in
controlled conditions, which can be precisely defined in
advance.

In the testing process of the Web application
configuration, parameters for the test cases creation were:
OS, selected localization, Web browser, support for
JavaScript, ActiveX controls, cookies. But, at glance, it is
clear that there are a number of test configurations on the
client side, which are necessary to provide to carry out
exhaustive testing.

Using combinatorial testing, we have defined all pairs of
combinations, and later, the reduced set of test cases for
testing the configuration. Testing was realised by means of
using virtualization.

The process included the following steps:
1. Parameters that will be tested are identified:
a. OS, localization, web browser, support for

JavaScript, cookies, ActiveX controls,
2. Certain values are possible - selected for each

parameter:
a. Client OS: Windows XP, Windows Vista, Mac OS

X 10, Windows 2000, Linux
b. Browser: Internet Explorer 6, Internet Explorer 7,

Mozilla Firefox 2, Mozilla Firefox 3, Apple Safari 3,
Opera 9

c. Localizations: Albanian, Croatian, Hungarian,
Serbian, Slovenian, another localization

d. JavaScript: allowed, not allowed
e. Cookies: allowed, not allowed

f. ActiveX control: allowed, not allowed
3. Limits are defined:
a. In order to avoid the risk of loss of valid pairs, there

are not allowed to create certain combinations (Browser
Apple Safari 3 can be tested only on Mac OS X 10. At the
same time, this OS will not be tested in combination with
other browsers).

b. There are defined values (seeds), which must appear
as a test case, within the generated set of test cases,
because they are expected as most likely combination of
values of parameters.

c. Weight factors, i.e. specific values for parameters are
estimated (more emphasis is given to the following
parameters values: client OS - Windows XP, browser -
Internet Explorer 7, JavaScript - allowed, Cookies -
allowed, the ActiveX control - allowed).

4. The total number of test cases, regarding the defined
variables and their values for all combinations, were 1440.

5. Virtual machines are created under defined
configurations for testing.

Thus, in case study, the number of initial configuration,
we had to test, was 1440. Applying the all-pairs algorithm,
to extract the unique combination of pairs, the initial
number of the necessary configurations, starting from
1440, was reduced to 38. Thus, the 2.6% of the total
number of the theoretically possible configurations
covered all the pairs of variables. Testing the final set of
selected test configurations was done by applying virtual
machine.

VI. CONCLUSION
The aim of this paper is to point out the possibility of

improving the process of testing software systems. Initial
idea was that the use of the software virtualization in the
process of testing will reduce the requirements for the
necessary hardware and software resources. At the same
time, virtualization is combined with the combinatorial
testing, in order to reduce the number of test cases that
need to test, while this does not impair the accuracy and
reliability testing software. On the basis of acquired
experience and obtained test results, it can be noted that
the virtualization of the application and the combinatorial
testing were good decision. This is especially true in the
case of configuration testing, where was necessary to
contribute to the reduction of the test resources, such as
were: time, required hardware and software configurations.

LITERATURA
[1] Lj. Lazic, N. Mastorakis, "Orthogonal Array application for optimal

combination of software defect detection techniques choices",
WSEAS TRANSACTIONS on COMPUTERS, August 2008, pp.
1319-1336.

[2] S. Seetharaman, K. Murthy, "Test Optimization Using Software
Virtualization", IEEE Software, IEEE Computer Society,
September/October 2006, pp. 66 - 69.

[3] G. Goth, "Virtualization: Old Technology Offers Huge New
Potential", IEEE Distributed Systems Online, vol. 8, no. 2, 2007.

[4] S. Popovic and Lj. Lazic."Orthogonal Array And Virtualization As
A Method For Improvement Configuration Testing", Proceedings
of 1st IEEE Eastern European Regional Conference on the
Engineering of Computer Based Systems - ECBS-EERC 2009,
Novi Sad, September 7th-8th 2009, pp.148-149.

1275

	I. Introduction
	II. Framework for an integrated End-to-End Testing of IT Architecture and Applications
	III. Combinatorial testing - Orthogonal Array Testing Strategy (OATS) and Techniques
	IV. Virtualization Properties and Advantages
	V. Application - Case Study
	VI. Conclusion

