
17th Telecommunications forum TELFOR 2009 Serbia, Belgrade, November 24-26, 2009.

Abstract — In this paper, a design and programming of

JAVA applications on mobile phones that securely connect to
Web services are described. We considered a Web service
scenario where mobile phone user produces a cryptographic
signature in the JAVA application using the smart card. Data
is encrypted using a crypto Xlet JAVA application installed on
mobile phone with CDC configuration. The user uses XML
signature to wrap a cryptographic signature into the SOAP
request and sends the request over to the remote Web service
endpoint implementation. Web service performs request
processing and sends SOAP response back to the WSA (Web
Service API) framework. WSA processes the SOAP response
and display the status to the mobile user. The example
described is carried out within the EU IST (Secure,
interoperable cross border m-services contributing towards a
trustful European cooperation with the non-EU member
Western Balkan countries) [1].

Keywords — Java mobile application, Mobile phone with
CDC configuration, Smart card, SOAP protocol, SWEB,
XML Signature, Xlet, Web service.

I. INTRODUCTION

Java 2 Micro Edition (J2ME) is a runtime environment
for resource-constrained environments. J2ME includes

specific virtual machines, configurations and profiles for
various environments and needs. With an appropriate
configuration and profile, J2ME applications could be
executed within pagers, mobile phones, PDAs, set-top
boxes and automobile navigation systems, just to mention
some [2].
 It defines configurations (hardware model
configurations with supporting software) and profiles
(supporting software APIs) that allow Java to be used on
small and embedded devices.

The Java Specification Request 172 (JSR 172) specifies
standardized client-side technology to enable J2ME
applications to consume remote services on typical web
services architectures.

JSR J2ME devices are only expected to consume Web
services exposed by service endpoints. This scenario is
depicted in Figure 1.

Milan Marković, Banca Intesa ad Beograd, Milutina Milankovića 1c,

11070 Novi Beograd, Srbija (tel: 381-11-3770187; e-mail:
mmarkovic@bancaintesabeograd.com).

Goran ðorñević, The Institute for Manufacturing banknotes and coins
NBS, Pionirska 2, 11030 Beograd, Srbija (tel: 381-11-3691361; e-mail:
goran.djordjevic@nbs.rs).

Figure 1: Web service consuming services exposed by a

Web service endpoint

 Web services are a good way to allow smaller devices
and applications to use the processing power available on
larger machine. Java 2 Micro Edition (J2ME) is a runtime
environment for resource-constrained environments. Web
Services APIs (WSA) for J2ME uses the idea of stub
classes, so other technology components such as
cryptography, XML signature and Java Card technology
have to fit into WSA stub classes.

II. IMPLEMENTATION ASPECTS

In a process of development of JAVA Mobile
Application we used J2ME developing environment. The
J2ME is a runtime environment for resource-constrained
environments. J2ME includes specific virtual machines,
configurations and profiles for various environments and
needs. With an appropriate configuration and profile,
J2ME applications could be executed within pagers,
mobile phones, PDAs, set-top boxes and automobile
navigation systems, just to mention some [2].

Bouncy Castle APIs - In order to encrypt sensitive data
we used Bouncy Castle Cryptography APIs. Bouncy Castle
is an open source Java API for encrypting and decrypting
data. There is a lightweight package that is suitable for
MIDP applications where only a fraction of the API will be
used at any one time.

An Example of Web Service Based Secure
Mobile Application

Milan Marković, Goran ðorñević

J

An endpoint exposing its Web
services

A Web service client running on
a J2ME device

Another Web service client
running on a J2ME device

1229

Obfuscation process - One problem inherent to most
mobile devices is the limited amount of memory. As with
most any library you use, only a small portion of the code
is typically needed by your application. One common way
to eliminate unused code, and at the same time make it
more challenging to reverse engineer an application, is to
use a Java obfuscator. We used open source obfuscator
ProGuard.

Security and Trust Services API (SATSA) - Security and
Trust Services API is a new API that provides additional
security capabilities to the J2ME CLDC platform. It
specifies a collection of APIs that provide security and
trust services for J2ME CLDC by integrating a Security
Element (SE).

The SE is a hardware or a software component in a
J2ME device. It provides the following features:

• Secure storage to protect sensitive data.
• Cryptographic operations.

The support for cryptographic smart cards is of
particular interest to developers writing J2ME applications
for smart phones. Keys and certificates can be stored on
the smart card and data can be signed without the private
key ever leaving the card. High-end smart cards are temper
resistant and provide authentication schemes, such as
requiring a PIN or a password before access to the smart
card is granted. This way security is dependent on the
smart card not being compromised. Private keys do not
have to be stored on diverse insecure clients, enabling
vendors to focus on keeping the smart card secure from
physical tempering and, just as important, smart card API
exploitation[4].

This client application comprises of following
functionalities:

• Graphical User Interface (GUI) for presenting
business functionalities to the end user,

• Business (core) functionalities of the application –
SWEB functionality: m-residence certificate.

• Security functionalities,
• Communication.
The SWEB secure JAVA mobile application objects and

community are represented on Figure 2.

Figure 2: JAVA mobile application community

III. SWEB ARCHITECTURE

SWEB uses defines an SWEB community, consisting of
[1]:

• Citizens,
• Civil servants,
• Administrators.

Depending on the scenario, it might be necessary to
introduce some other roles, like delegates of either citizens
or civil servants and several levels of administration here,
but it is assumed that for the functional purpose of the
SWEB system those roles doesn´t matter as they usually
don´t influence the platform processes directly, but using
itself delegates which are actually belonging to one of the
groups mentioned.

Citizens are the primary users SWEB targets. Using a
mobile device, they access the system, initiate requests or
receive notifications pushed by the platform. Citizen
delegates are handled like civil servants, as they can´t
access the system for someone else, due to the nature of
the SWEB authentication mechanism. Instead they are
forced to get help by a civil servant, actually initiating the
request.

Civil servants are the right hand of the SWEB platform.
Where SWEB is only able to check requests for security
constraints, Civil Servants may approve or decline requests
on a semantic legal level that is elusive by computer
systems. They are also necessary when it comes to delegate
requests by other citizens or civil servants from other
municipalities.

Administrators are those responsible for administration
of the community as a whole or the platform and the
involved community members in detail. In SWEB there are
administrators that are actually handling the technical
maintenance and administrators that are able to hand out
certificates to civil servants.

Those three roles are actually directly mapped to system
roles, when it comes to the technical realization. While
administrators are mainly used for PKI administration and
security certificate handling, civil servants and citizens are
roles that need to be integrated into the platform logic
directly to distinguish between them, when it comes to
access control, authorization and to business logic
decisions. Therefore the decision to use SAML assertions
with integrated roles came naturally [7].

By using SAML together with WS-Security it was a
small step to extend the server-server communications to
use this technology as well. For that reason, internally
there was a fourth role defined. The role of each server is
important as it is necessary to be defined for
intercommunication between the various SWEB platforms.
However, although the communication is established
between two servers, the documents delivered are meant to
be assured and signed by civil servants, to assure
responsibility by a human being.

IV. SWEB WEB SERVICE DESCRIPTION

 Principal Residence case
A citizen of city A needs a certification for his principal

residence in city A. He will contact the municipality of city
A for that.

In this process, he sends a request to this municipality
first. The municipality creates his mRCertificate. He gets a
final notification message and can pick up his
mRCertificate afterwards [8].

In a more detailed view, there are three system objects
belonging to the municipality. It is the SWEB Platform,
the local IT Infrastructure (legacy system) and the civil

GUI

Communication

Security Business funct.

1230

servant as the human actor. The citizen sends his request to
the SWEB platform, which in return first sends a
notification back about the incoming request and
afterwards forwarding the request to the civil servant for
approval. After this, the request is send to the legacy
system, where the mRCertificate is created.

After that, the civil servant has to approve this
mRCertificate. Furthermore, there is a final notification
send to the mobile to inform the citizen that he can pick up
his mRCertificate. Finally, the mRCertificate needs to be
retrieved by the citizen using the document retrieval
service described before (See Figure 3).

Implemented security functionalities for the SWEB
platform are following:
1. WS-Secured SOAP communication with end users

according to the scenarios.
2. Signature verification of signed and timestamped

requests, SAML token and e/minvoices as well as
validations of certificates from all parties.

3. Create UserProfile from Civil Servant’s X.509v3
certificate.

4. Timestamping documents signed by Civil Servants.
5. Signing and timestamping cross-border mRCertificate

request that should be sent to the other municipality.
6. Requesting and receiving SAML token for Civil

Servant and for the SWEB platform.

7. WS-Secured SOAP communication with the
Interaction Tier Manager of another SWEB platform
according to the cross-border scenario.

8. Locate and validate certificates by using corresponding
functions of the XKMS protocol and communicates
with the XKMS server via SOAP communication.

 Secondary Residence case
A citizen of city A needs a certification for his

secondary residence in city B. In this scenario, the citizen
contacts his municipality in city A. Now, there is a
communication between the two municipalities, as city B is
the municipality responsible for creating this
mRCertificate. The citizen gets his notification and
mRCertificate through the municipality of City A (see
Figure 4).
 As in the previous scenario, after the citizen is notified
of the incoming request, the request is delivered to the civil
servant of city A. He approves the request and sends it to
the municipality of city B. There, the request has to be
approved from the civil servant of city B. Afterwards the
request will be processed by the legacy system of city B
where the mRCertificate is created. The mRCertificate will
be approved again by the civil servant of city B. Now, the
mRCertificate goes to the municipality of city A where it is
approved by the civil servant. Finally, the notification
message is send and the citizen can fetch his
mRCertificate.

Figure 3: Principal Residence’s scenario details

1231

Figure 4: Secondary Residence’s scenario details

V. CONCLUSION

 This work is related to the consideration of some
possible SOA-based m-government online systems, i.e.
about secure mobile communication between citizens and
companies with the small and medium governmental
organizations, such as municipalities. In fact, we
elaborated a secure m-government framework which is
based on secure JAVA mobile application. We described
the two SWEB Web service cases: principal residence and
secondary residence. In both anayzed cases citizen
required his (her) residence certificates using mobile phone
with installed secure SWEB mobile midlet application.

We considered the scenario where private asymmetric
keys and digital certificates stored on the smart card and
data can be signed without the private key ever leaving the
card.

ACKNOWLEDGEMENT

This work is being carried out in the context of the IST
international cooperation project SWEB (044979). This
paper is based on the work performed within the context of
this project and the authors would like to acknowledge all
SWEB partners.

DISCLAIMER

This reseacrh outlined in this paper has been undertaken
with the financial assistance of the European Community.
The views expressed herein are those of SWEB
Consortium and can therefore is no way be taken to reflect
the official opinion of the European Commision. The
information in this document is provided as is and no
guarantee or warranty is given to state that the information
is fit for any particular purpose. The user therefore uses the
information at their sole risk and liability.

LITERATURE

[1] SWEB Project Homepage,
 http://www.sweb-project.org.
[2] Introduction to J2ME Web Services, C. Enrique Ortiz,

http://developers.sun.com/techtopics/mobility/apis/artic
les/wsa/.

[3] MIDP 2.0: SATSA-APDU API Developer’s Guide,
version 1.0, February 2nd, 2007. Forum Nokia,
Handbook. Mill Valley: University Science, 2007.

[4] Building a secure SOAP client for J2ME, Part 1:
Exploring Web Services APIs (WSA) for J2ME“, Bilal
Siddiqui, 16 Jun 2006,
http://www-128.ibm.com/developerworks/edu/

[5] “Understanding the Web Services Subset API for Java
ME“, C. Enrique Ortiz, March 2006,
http://developers.sun.com/techtopics/mobility/midp/arti
cles/webservices.

[6] MIDP 2.0: SATSA-APDU API Developer’s Guide,
version 1.0, February 2nd, 2007. Forum Nokia,
Handbook. Mill Valley, CA: University Science, 2007.

[7] Spyridon Papastergiou, Athanasios Karantjias, Despina
Polemi, and Milan Marković, “ A Secure Mobile
Framework for m-Services”, The Third International
Conference on Internet and Web Applications and
Services, ICIW 2008, June 8-13, 2008 - Athens,
Greece.

[8] M.Marković, G.ðorñević, “Java based secure mobile
web service scenario,” INFOTECH 2009, March,
2009, Jahorina, Republic Srpska, Bosnia and
Herzegovina.

1232

