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Abstract — This paper presents a novel numerical
algorithm for computing of the power line electric and
magnetic fields. Phase conductor currents are separated into
their longitudinal and transversal components. Computation
of the magnetic flux density is based on the Biot-Savart law.
Longitudinal component of the electric field intensity is
computed from vector magnetic potential. Two other
components of the electric field intensity are computed from
the transversal currents, which are obtained by the average
potential method.
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line, buried cable line, Biot-Savart law, average potential
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I. INTRODUCTION

HE question of electromagnetic pollution is becoming
a matter of serious scientific and public health policy

concern with the development of general consciousness
about the possible adverse human health effects of
electromagnetic fields. The most controversial one is the
supposed elevated risk of cancer.

The ICINIRP guidelines [1] recommended reference

levels for 50 Hz occupational exposure are 500 T for the
magnetic flux density and 10 kV/m for the electric field
intensity. For general public exposure to 50 Hz electro-

magnetic field, the reference levels are 100 T for the
magnetic flux density and 5 kV/m for the electric field
intensity.

In numerical models for computation of the power line
electromagnetic field, the power frequency electric and
magnetic field computation is based on the quasi-static
approximation [2], [3].

II. SCALAR ELECTRIC AND VECTOR MAGNETIC POTENTIALS

In mathematical model developed for the computation
of the electric and magnetic field of power line straight
section, phase conductors of the power line satisfy a thin-
wire approximation and are treated as line sources
positioned parallel to the earth surface [4] - [6]. Number of
line sources equals the number of phase conductors, which
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are positioned in the air or earth at some distance from the
surface. Line sources are oriented along the x-axis of the
Cartesian coordinate system. Origin of the selected
coordinate system is on the earth surface and in the middle
of power line section. Cross section of a typical three-
phase high voltage power line with a single shield wire and
a buried cable line, arranged in the y-z plane of the selected
coordinate system is presented in Fig. 1.

Computation of the electric and magnetic field is carried
out in the y-z plane positioned in the middle of the power
line section.

Fig. 1. Position of an overhead and buried cable power
line in the coordinate system.

Current which flows through each of the phase
conductors can be, according to [3], [4], [6], separated into
two individual parts: longitudinal phase conductor current
and transversal phase conductor current. According to the
adopted thin-wire approximation, longitudinal current is
flowing along the phase conductor axis. This current is
approximated by a constant, whose value is equal to its
average value. Transversal (leakage) current leaks
uniformly from the surface of the phase conductor into the
surrounding medium (air or earth).

Starting point for the development of the mathematical
model for the computation of electromagnetic field of
power lines can be seen in solutions of the Helmholtz
differential equation for the scalar electric and vector
magnetic potentials [3], [5]. Solutions of the Helmholtz
differential equation for the scalar electric and vector
magnetic potentials in the homogeneous, linear, isotropic
and unbounded medium, with neglected potential
retardation effects reduce to the solutions of Poisson
differential equations [4], [6]. Retardation effects can be
neglected in this case, without loss of accuracy, due to the
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fact that frequency of interest equals the power frequency
(50 – 60 Hz). By introducing the phase conductor
longitudinal and transversal currents, in a case of arbitrary
number of phase conductors (n), solutions of the Poisson
differential equations for the scalar electric and vector
magnetic potentials can be expressed by [3], [4], [6]:
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where is the complex electrical conductivity of the

medium, 
iI is the longitudinal current of the ith phase

conductor, tI i is the transversal current of the ith phase

conductor,  is the length of the power line section and R

is the distance between the field and source points.

Integration path i in the equations (1) and (2) is

positioned along the ith phase conductor axis.

The longitudinal currents are the input data in all cases.

The transversal phase conductor currents are non-existent

in buried cable lines, while transversal phase conductor

currents in overhead power lines are computed by the well-

known average potential method [7], which gives the

following system of linear algebraic equations:
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where j is the average potential of the jth phase

conductor. The shield wire of the overhead power line is

just a special case of the phase conductor with 0i I

and 0i .

Impedances jiZ from the equation (3) can be computed

using the following expression:

)D(ZF)d(ZZ ji jiji  (4)

where F is a reflection coefficient, which can be expressed
as follows [3], [4], [8]:
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with 1 and 2 representing the complex electrical

conductivities of the air and earth, respectively, σ is the

electrical conductivity of the earth, f is the frequency,

ε0 = 8.854·10-12 F/m is the vacuum permittivity and εr is the

relative permittivity of the earth.

Impedances )d(Z ji and )D(Z ji from the expression

(4) can be computed using the following equation [3]:




















 vv

v

v

2

1
)(Z 2

2

2
1

2
2

nv 





(6)

by introducing the following values instead of v:
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where r0i is a radius of the ith conductor, while yi and zi are
coordinates of the ith conductor middle point.

Numerical algorithm for the computation of electro-
magnetic field of power lines is hereafter subdivided into
two separate parts:

 numerical algorithm for the computation of
magnetic flux density,

 numerical algorithm for the computation of electric
field intensity.

III. COMPUTATION OF THE POWER LINE MAGNETIC FLUX

DENSITY

Numerical algorithm for the computation of the

magnetic flux density of the overhead power line and

buried cable line are mathematically identical and are

based on the application of the Biot-Savart law [2].

Situation of the arbitrary ith phase conductor of the high

voltage power line positioned in the x direction of the

selected coordinate system is depicted in the Fig. 2. This

phase conductor is carrying a longitudinal current 
iI ,

which causes the magnetic field at the observation point

P(0, y, z) in the y-z plane, also depicted in the Fig. 2.

Fig. 2. Computing of the magnetic field caused by a
single phase conductor of the power line.

For power line, components of the magnetic flux density
are computed for the observation point P(0, y, z) in the y-z
plane using the following expressions [3]:
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where:
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The constant μ0 = 4·π·10-7 H/m is the medium
permeability, which is equal to vacuum permeability.
Finally, the effective total value of the magnetic flux
density at the observed point P can be written as:
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IV. COMPUTATION OF THE OVERHEAD POWER LINE

ELECTRIC FIELD INTENSITY

Computation of the overhead power line electric field
intensity can be sought through the well-known equation
which combines scalar electric potential and vector
magnetic potential [2]-[4]:
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Unlike the computation of the magnetic field, which was
equivalent for both overhead and buried cable power line,
this is not the case for the computation of electric field
intensity.

In the here presented case of the overhead power line,
vector magnetic potential has only the x-component, while
potential distribution is symmetric in respect to the y-z
plane. Components of the electric field intensity for the
overhead power line can be computed from the following
expressions [3]:
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where partial derivatives of the scalar electric potential
features prominently in the development of y- and z-
components. It can be seen from the expressions (17) and
(18) that potential distribution is only needed in the y-z
plane (x = 0), due to the fact that potential distribution is
symmetric in respect to this plane. Magnetic vector
potential at the y-z plane, which is a consequence of n
phase conductor longitudinal currents, can be expressed as
follows [3], [4]:
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Potential distribution in the y-z plane due to the
transversal currents of all phase conductors can be
expressed according to the following expression [3]:
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where:
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The newly introduced variable Di is the shortest distance
between the observation point and the line passing through
the image of the ith phase conductor axis; it can be
computed as follows:
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Finally, computation of electric field intensity for the
overhead power line can be accomplished with the
following expressions [3]:
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Total effective value of the electric field intensity of the
overhead line at the observed point P can be written as:

222
EEEE zyx  (27)

V. COMPUTATION OF THE BURIED CABLE LINE ELECTRIC

FIELD INTENSITY

The computation of the electric field intensity of buried
cable lines is a special case of the above presented
algorithm for the computation of the electric field intensity
of overhead power lines. Since there is no transversal
component of the current outside of the buried cable line,
the scalar potential in the air and earth is non-existent so
the expression (15) for the computation of cable line
electric field intensity becomes:
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The x-component of the electric field intensity,
described by (23), is mathematically identical to the one
presented for the overhead power line case.

VI. NUMERICAL EXAMPLES

Two numerical examples will be presented which
demonstrate computation of the electromagnetic field for a
typical overhead power line and for a buried cable line.

A. Overhead power line

This numerical example features a typical 110 kV
overhead power line. The input data and the geometry of
the representative power line tower are given in Table 1.

TABLE 1: INPUT DATA FOR OVERHEAD POWER LINE.

i y(m) z(m) (kV) (A)I 

Shield
wire

1 0 27.9  00  00

L1 2 2.5 24.8  05.63  30630

L2 3 -3.0 22.4  1205.63  150630

L3 4 3.5 20.0  1205.63  90630

The data in Table 1, together with the power frequency
f = 50 Hz, length of the overhead power line ℓ = 1 km,
radius of the shield wire r01 = 4.72 mm, radii of the phase
conductors r02 = r03 = r04 = 10.95 mm, relative permittivity
of earth εr = 10 and the electrical conductivity of earth
σ = 0.01 S/m represent the input data for the numerical
example. Computation of the electromagnetic field is
carried out at observation points along y-directed profile,
positioned at 1 m above the earth surface (z = 1 m).

Fig. 3 and Fig. 4 respectively present computed effective
values of the components and the total effective values of
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magnetic flux density and electric field intensity, along the
observation profile.

Fig. 3. Effective values of the components and the total
magnetic flux density of the overhead power line.

Fig. 4. Effective values of the components and the total
electric field intensity of the overhead power line.

B. Buried cable line

A 35 kV buried cable line, length ℓ = 1 km, consists of
three phase conductors situated along the x-axis. The input
data and coordinates are given in Table 2. Power
frequency f = 50 Hz.

Fig. 5. Effective values of the components and the total
magnetic flux density of the buried cable line.

Fig. 5 presents effective values of components and the
total effective value of the magnetic flux density along the
y-directed observation profile at 1 m above the earth
surface. The total electric field intensity of this buried
cable line, along the same profile, is shown in Fig. 6.

TABLE 2: INPUT DATA FOR BURIED CABLE POWER LINE.

i y(m) z(m) (A)I 

L1 1 0 -0.8  30805

L2 2 -0.21 -0.8  150805

L3 3 0.21 -0.8  90805

Fig. 6. Total effective value of the electric field intensity of
the buried cable line.

VII. CONCLUSION

Here presented numerical algorithm for the computation
of the power frequency electromagnetic field of overhead
and buried power lines is based on the separation of the
phase conductor currents into their longitudinal and
transversal components. The magnetic and electric fields
computations are based on the Biot-Savart law and the
average potential method.

This algorithm is suited for computation of electric and
magnetic field of the relatively short straight sections of
power lines. In the case of very long power line, results
obtained by the algorithm developed in this paper are in
good agreement with those obtained by the algorithm
developed for infinitely long straight power line.

REFERENCES

[1] ICNIRP Guidelines for Limiting Exposure to Time-Varying
Electric, Magnetic and Electromagnetic Fields (up to 300 Hz),
Health Physics, vol. 74, no. 4, pp. 494-522, 1998.

[2] Z. Haznadar, Ž. Štih, Electromagnetic Fields, Waves and
Numerical Methods, Amsterdam: IOS Press, 2000.

[3] S. Vujević, P. Sarajčev, and A. Botica, "Computation of the
overhead power line electromagnetic field," in 16th International
Conference on Software, Telecommunications and Computer
Networks (SoftCOM 2008), Split, 2008, pp. 27-31.

[4] P. Sarajčev, "Electromagnetic model of the system of conductors in
multilayer medium," (in Croatian), Ph.D. Thesis, University of
Split, FESB, Split, 2008.

[5] J. Moore and R. Pizer (editors), Moment Methods in
Electromagnetics - Techniques and Applications, New York: John
Wiley & Sons, 1984.

[6] S. Vujević, "Time-Harmonic Analysis of Earthing Grids," in
Electrical Engineering and Electromagnetics VI, C. A. Brebbia
and D. Poljak, Ed. Southampton, Boston: WIT Press, 2003, pp.
235-244.

[7] D. L. Garrett and J. G. Pruitt, "Problems encountered with the
average potential method of analyzing substation grounding
systems," IEEE Transactions on Power Apparatus and Systems,
vol. PAS-104, no. 12, pp. 3585-3596, 1985.

[8] S. Vujević and P. Sarajčev, "Potential distribution for a harmonic
current point source in horizontally stratified multilayer medium,"
COMPEL, vol. 27, no. 3, pp. 624-637, 2008.

878


