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Abstract — This paper presents an efficient general 

method for the numerical analysis of complex and large 
electromagnetic-field structures. The method is based on 
merging the diakoptic approach with the surface integral 
equation formulations. Compared to the classical integral 
equation approach, the proposed method provides significant 
reduction of the CPU time and storage, preserving high 
accuracy of results. 
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I. INTRODUCTION 
OR several decades, numerical techniques have been 
successfully used to solve electromagnetic (EM) field 

problems. We focus our attention on EM systems that are 
made of linear isotropic and piecewise-homogeneous 
materials, which is a reasonable assumption for most 
practical applications. Particularly efficient and accurate 
are integral equation formulations. They are based on the 
boundary conditions, and they are usually solved using the 
method of moments (MoM) [1]-[6]. For the class of 
problems considered, the unknowns in these equations are 
surface sources. Hence, we talk here about surface integral 
equation (SIE) formulations. From our experience, the SIE 
approach is substantially more efficient and accurate than 
using the finite-difference method (FD) and the finite-
element method (FEM) [4]-[6]. The advantage of the SIE 
approach is most significant for open-region problems 
(e.g., antennas, multiconductor transmission lines without 
shields, etc.). 

There is an ever-increasing demand to analyze larger 
and more complex structures, leading to tremendous 
increase of storage and CPU time requirements. This, in 
turn, calls for development of new numerical techniques 
that can meet these demands on available computers. 
Various approaches based on domain decomposition and 
equivalent sources have been used to increase the 
efficiency of computations of the FD, FEM, and MoM 
techniques. Notable examples are the domain 
decomposition method [7]-[9], the fast multipole method 
[10], [11], and several approaches with multilevel basis 
functions [12], [13]. Huge accelerations of the finite-
difference and finite-element formulations using the 
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partitioning have been reported in [14], [15]. In [16], [17], 
an approach has been developed to improve the efficiency 
of the integral equation analysis of scatterers based on 
Huygens’ principle, volume integral equations, and 
partitioning. 

The ideas presented in these papers have motivated us 
to merge the advantages of the SIE formulations and the 
domain partitioning (diakoptic approach), with the goal to 
develop an efficient general method for the analysis of 
complex and large EM systems. We will refer to this 
method as the diakoptic approach with surface integral 
equations (DSIE). We have successfully applied this 
method to the analysis of two-dimensional (2-D) and 
three-dimensional (3-D) EM systems, both in electrostatic 
and dynamic fields [18]-[22]. 

The remainder of the paper is organized as follows. 
Section II summarizes an equivalence theorem that is the 
foundation for the diakoptic approach and MoM-SIE. The 
DSIE approach itself is outlined in Section III. Details of 
its combination with the SIE formulations are given in 
Section IV. Section V presents some examples of the 
DSIE analysis of electrostatic and dynamic problems. 
Finally, Section VI provides concluding remarks. 

II. EQUIVALENCE THEOREM 
In the theory of electromagnetic fields, there exist 

several equivalence theorems [23], [24]. The DSIE 
approach is based on the theorem of equivalent surface 
sources (Huygens’ principle). We summarize the 
statement of this theorem, without the strict proof. 

Let us consider the general case of the dynamic EM 
field (Fig. 1a). One part of the region where the EM field 
exists is wrapped by an arbitrary closed surface S . The 
inward normal on that surface is n , while 1E  and 1H  are 
the electric and magnetic fields inside S . Let us place 
fictitious surface electric currents (of density sJ ) and 
surface magnetic currents (of density sM ) on S. The 
equivalence theorem claims that if 1s HnJ ×=  and 

1s EnM ×−= , and if all field excitations outside S  are 
turned off, then the EM field inside S  is preserved, while 
the EM field outside S is annihilated (Fig. 1b). The surface 
currents sJ  and sM  are referred to as equivalent sources. 

If the sign of the equivalent sources is changed (or, 
equivalently, if the direction of the unit normal n  is 
reversed) and if all excitations inside S are turned off, the 
field outside S  is preserved, while the field inside S is 
annihilated (Fig. 1c). 
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Figure 1.  Equivalence theorem: (a) original system and equivalent 
systems for (b) interior and (c) exterior regions. 

There are surface electric and magnetic charges 
associated with the equivalent currents. The charge 
densities can be evaluated using the continuity equations: 

sss j=div ωρ−J  for the electric charges and 

sss j=div ωτ−M  for the magnetic charges. 
In the electrostatic case, the equivalent surface sources 

reduce to surface charges (of density sρ ) and surface 
dipoles (i.e., a double-charge layer, of density sp ) [23]. 
Referring to Fig. 1b, these equivalent sources are 

evaluated as 
n
VE

∂
∂

ε−=ε=ρ 0n0s  and Vnp 0s ε= , where 

1V  is the electric scalar-potential inside S. The density of 
the surface dipoles is a vector perpendicular to S . It can 
be represented as np ss p= , where sp  is the projection of 

sp  on n . 

III. DIAKOPTIC APPROACH 
The diakoptic approach (domain partitioning) has been 

successfully used over years in various areas, like the 
circuit theory [24], networking [25], and to some extent in 
EM analysis [12], [26]-[29]. 

In our diakoptic approach, the analyzed EM system is 
split into non-overlapping arbitrarily-shaped subsystems. 
The union of all subsystems is the whole region of interest 
(i.e., the space with non-zero EM field in the original 
problem). The boundary of a subsystem is a virtual closed 
surface (diakoptic surface), which is an interface between 
the subsystem and its environment. 

Equivalent surface sources are placed on the diakoptic 
surface. Each subsystem, along with the corresponding 
equivalent surface sources, is analyzed independently of 
other subsystems. The analysis can be carried out using 
the FD, FEM, or SIE/MoM approaches. The objective of 
the analysis is to find a relation between the equivalent 
sources at the diakoptic surface. This relation is linear, and 
it includes contributions of the excitations located in the 
subsystem. It can be written in matrix form. This relation 
is valid for any EM environment in which the subsystem 
may be located.  

There are various possibilities to set this matrix relation. 
The formulation shown here is analogous to the Norton 
representation of a multiport linear network. However, 
other formulations are possible, e.g., analogous to the 
Thevenin representation or the scattering-parameter 
representation of a multiport network. The latter 
formulation is advantageous in dynamic cases as it helps 

suppress parasitic resonances of the analyzed subsystem. 
The relations for all subsystems are combined into a 

system of linear equations (diakoptic system of equations) 
to yield the equivalent sources at the diakoptic surfaces. 
Once these sources are found, the EM field in the original 
problem can be calculated for each subsystem using the 
equivalent sources at its diakoptic surface and the 
excitations within the subsystem. 

Each subsystem is substantially smaller and simpler 
than the original system. Hence, the diakoptic solution can 
be more efficient than the simultaneous solution of the 
original EM system. 

IV. DIAKOPTIC APPROACH COMBINED WITH SURFACE 
INTEGRAL EQUATION FORMULATIONS 

A. Diakoptic Implementation 
Our objective is to analyze an arbitrary (linear) EM 

system made of piecewise-homogeneous linear isotropic 
materials. Following the classical MoM approach, the 
problem is most efficiently solved using surface integral 
equation formulations [4], based on the surface 
equivalence theorems. The unknowns are surface 
equivalent sources at the surfaces of material 
discontinuities (e.g., conductor surfaces and dielectric-to-
dielectric interfaces). In a dynamic case, the equivalent 
sources are surface electric and magnetic currents. In an 
electrostatic case, the equivalent sources are surface 
electric charges (along with surface dipoles in some 
formulations). 

Instead of applying MoM to the whole analyzed system, 
we employ the diakoptic approach. For each subsystem, 
we postulate boundary conditions for all surfaces of 
material discontinuities, as well as for the diakoptic 
surface. Based on these conditions, we formulate a set of 
surface integral equations. The unknowns are the 
equivalent sources at the material boundaries (the same 
sources as in the classical approach) and the equivalent 
sources at the diakoptic boundaries. 

MoM is thereafter applied to each subsystem. All 
equations and unknowns are treated in a unique way. In 
particular, we use the same expansion functions for all 
equivalent sources, to simplify the programming 
implementation. However, there is no theoretical obstacle 
to use different expansion functions. 

The proposed technique is general and applicable to 
various two-dimensional and three-dimensional problems. 
The region of a subsystem can be finite or infinite. Hence, 
the approach can be applied both to open-region and 
boxed problems. 

For simplicity, we further describe the diakoptic 
formulation in more details only for the electrostatic case, 
because the equivalent sources are expressed in terms of 
scalar quantities. 

We consider a large electrostatic system that consists of 
arbitrarily shaped conductors and piecewise-homogeneous 
dielectrics. The dimensions of the system, the material 
properties, and the potentials of all conductors are 
assumed known. The objective is to evaluate the charge 
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distribution on the conductors due to the given excitations 
(potentials). 

In the classical MoM approach, the problem can be 
solved using a surface integral equation formulation 
[5], [30]. Applying the concept of bound charges, the 
medium is homogenized and reduced to a vacuum. A set 
of surface integral equations is formulated for the total 
surface charges on the surfaces of the material 
discontinuities. These equations are based 1) on the 
boundary condition for the potentials at the conductor 
surfaces, and 2) on the condition for the normal 
component of the electric field at the dielectric-to-
dielectric interfaces. MoM is thereafter applied to find the 
distribution of the total charges. Finally, the free surface 
charges on the conductors are extracted from the total 
charges. 

In the diakoptic formulation, the unknowns are the total 
surface charges on the surfaces of material discontinuities 
along with the equivalent surface charges and dipoles on 
the diakoptic surfaces. We formulate the same surface 
integral equations for the surfaces of the material 
discontinuities as in the classical approach. For each 
diakoptic surface, we formulate an additional surface 
integral equation by requiring that the potential is zero just 
outside the corresponding subsystem. This equation has 
the same form as classical surface integral equations for a 
conductor. Compared to the classical formulation, we have 
one additional straightforward task: to evaluate the 
potential and electric field due to the surface dipoles. 

For simplicity, let us consider that the original problem 
is split into only two subsystems (Fig. 2a). An arbitrarily 
shaped closed surface S  represents the boundary between 
these two subsystems. The first subsystem consists of the 
structure inside S  (Fig. 2b), and the second subsystem 
consists of structure outside S  (Fig. 2c). We apply MoM 
to each subsystem. In particular, we use a piecewise-
constant approximation of the unknowns, i.e., the basis 
functions are constants (pulses) defined on respective 
subsections (patches). 

The total number of patches for the approximation of 
the charge distribution on the surfaces of material 
discontinuities in a subsystem is iN , 2,1=i . There is one 
unknown charge coefficient per patch. The total number of 
patches for the diakoptic surface is D. For each patch on 
this boundary, there are two unknown coefficients 
(scalars): one for the surface charges (  sρ ) and one for the 
intensities of surface dipoles ( sp ). Hence, the total 
number of unknowns for the diakoptic boundary is D2 . 

Note that it is not necessary to apply the same patching 
scheme for the surface charges and the surface dipoles on 
the subsystem boundary. It is sufficient that the same 
number of unknown coefficients is used for the surface 
charges and the surface dipoles. Consequently, the DSIE 
method can be implemented with higher-order basis 
functions as well. 
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Figure 2.  Domain partitioning for the case of two subsystems: 
(a) original system, (b) subsystem 1, and (c) subsystem 2. 

For each subsystem, we evaluate a linear relation 
between the unknown coefficients for  sρ  and sp  at the 
diakoptic surface. These relations have the common form 

 [ ] [ ][ ] [ ]0sss iiii ρpyρ += , 2,1=i , (1) 

where [ ]isρ  and [ ]isp  are column-matrices that contain 
the coefficients for the pulse approximations of  sρ  and 

sp  at the subsystem (diakoptic) boundary, respectively, 
[ ]0siρ  is a column-matrix that is due to the excitations in 

the subsystem, and [ ]iy  is a square matrix. The 
dimensions of matrices [ ]isρ , [ ]isp , and [ ]0siρ  are 1×D , 

while the dimensions of [ ]iy  are DD × . 
For each subsystem, matrix [ ]0siρ  is evaluated by 

setting to zero the intensities of all surface dipoles. The 
conductors in the subsystem are on their original 
potentials, and the potential at the diakoptic surface is 
zero. 

Matrix [ ]iy  is calculated when the potentials of all 
conductors are set to zero, and the system is exited by one 
surface dipole (pulse) at a time. We assume that the 
intensity of the surface dipole on one patch is unit, and we 
compute the coefficients for the surface charges at the 
diakoptic surface and at all surfaces of material 
discontinuities in the subsystem. Numerically, the 
coefficients of the charges at the diakoptic surface give 
one column of [ ]iy . As a byproduct of this analysis, the 
coefficients of the pulse approximation for the surface 
charges on the conductors, [ ]iscρ , are related to [ ]isp  as 
[ ] [ ][ ] [ ]0 scsc isiii ρpcρ += , where [ ]ic  is an DN ×c  matrix 

and cN  is the total number of coefficients for the free 
charges on the conductors. 

For the computation of matrices [ ]0siρ , [ ]iy , and [ ]ic , 

the MoM system matrix for a subsystem is filled and LU 
decomposed only once. The results are obtained using LU 
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back-substitutions for various excitations. 
The equivalent sources at the diakoptic surface are 

opposite for the two subsystems. Taking into account the 
opposite directions of the perpendicular unit vectors 1n  
and 2n , we can write 

 [ ] [ ] [ ] [ ] [ ]s2 s1 s2 s1 s and pppρρ ==−= . (2) 

Combination of (1) and (2) yields the diakoptic system 
of D linear equations, 

 [ ] [ ]( ) [ ] [ ] [ ]02 s01 ss21 ρρpyy −−=+ . (3) 

Once [ ]sp  is calculated from (3), matrices [ ]isρ , 
2,1=i , are calculated from (1). The conductor charges in 

the subsystems are calculated using matrices [ ]ic . 
When evaluating the matrix of electrostatic-induction 

coefficients for a multiconductor electrostatic system, the 
charge distribution has to be calculated several times, for 
various excitations (i.e., for different conductor 
potentials). In that case, the diakoptic system matrix is 
formed only once and then it is LU decomposed. The 
conductor potentials affect only the right-hand side in (3). 
The corresponding matrices [ ]0siρ  are calculated and the 

LU back-substitution is performed to find [ ]sp  as many 
times as needed. 

For the dynamic case, the diakoptic formulation is 
similar. The major difference is that now we have surface 
electric currents at the diakoptic surfaces (instead of the 
surface charges) and surface magnetic currents (instead of 
the surface dipoles). These currents are vector quantities. 
Each of them can be represented in terms of two 
components (tangential to the surface), which are scalar 
quantities. Following the same principles as for the 
electrostatic case, we formulate a matrix relation between 
the components of the equivalent surface currents and the 
equivalent surface magnetic currents. We can use arbitrary 
patching schemes for these currents, and the only 
constraint is that we have the same total number of 
unknowns for both equivalent current distributions. 

B. Maximal Theoretical Efficiency of the Diakoptic 
Approach 
We now estimate the efficiency of the diakoptic 

formulation assuming single-level decomposition. First, 
we consider a boxed EM system that is split into K  
congruent subsystems. Referring to the electrostatic case, 
let us denote by N  the total number of unknowns for 
surfaces of material discontinuities in a subsystem. Let D 
be the total number of unknown coefficients for  sρ  on 
the diakoptic boundary of the subsystem. The number of 
unknown coefficients for sp  is also D. Hence, when 
compared to the classical solution, the number of 
additional unknowns for a subsystem is D2 . The 
coefficients for  sρ  and sp  on the diakoptic surface are 
related as in (1). 

The total number of unknowns for solving the whole 
structure using the classical MoM procedure is KN . In 
the diakoptic approach, the total number of unknowns for 
the MoM analysis of one subsystem is DN + . If the 
subsystems are congruent, it is sufficient to analyze only 
one subsystem since the matrix relation (1) is identical for 
all of them. The total number of unknowns in the 
diakoptic system of linear equations is KD . 

We suppose that the CPU time required for the matrix 
inversion dominates in the numerical solution. The time 
needed for solving a system of linear equations is 
proportional to the cube of the total number of unknowns. 
We estimate the acceleration of the diakoptic analysis as 

 
( )

( ) ( )33

3

DSIE

SIE

KDDN
KN

t
ta

α++
≈= , (4) 

where SIEt  is the CPU time needed for the classical 
MoM-SIE approach, DSIEt  is the time for the DSIE 
approach, and 1=α . Fig. 3 shows the acceleration as a 
function of DN / , with K as a parameter. By inspecting 
Fig. 3, we see that for fixed K, there is no use of 
increasing DN /  above a certain value ( KDN ≈/ ). For 
fixed DN / , the maximal acceleration (when K increases) 

is ( ) α==
∞→

//lim 3
max DNaa

K
. We also note that the 

diakoptic formulation can be useful even with 2=K . 
The computer memory required to store a system of 

linear equations is proportional to the total number of 
unknowns squared. Assuming this memory requirement to 
dominate, we estimate the memory efficiency as 
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( ) ( )22

2

DSIE

SIE

KDDN
KN

m
mm

α++
≈= , (5) 

where SIEm  is the storage needed for the classical MoM, 

DSIEm  is the storage for the diakoptic analysis, and 1=α . 
The maximal memory efficiency of the diakoptic 
formulation when ∞→K  is ( ) α= // 2

max DNm . 
Let us consider now an open-region system and let K  

be the total number of congruent subsystems. The total 
number of subsystems is 1+K  because we have an 
infinite-region subsystem (note that its diakoptic surface is 
finite), which is different from other subsystems. In the 
worst case, the total number of unknown coefficients for 
the diakoptic surface of this subsystem is KD . The 
acceleration and the memory efficiency of the diakoptic 
formulation are given by (4) and (5), respectively, with 

2=α . 
Generally, if ND << , the diakoptic formulation will 

solve the problem faster and with less memory resources 
than the classical MoM approach. The diakoptic 
boundaries should be located in regions where the EM 
field is a slowly-varying function of spatial coordinates. 
All regions with fast-varying fields, which include fine 
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details of the analyzed structure, should be kept within 
subsystems and away from the diakoptic surfaces. This 
strategy enables the ratio DN /  to be large enough 
without sacrificing the accuracy of results. Consequently, 
the more complex the EM system is, the more efficient is 
the diakoptic formulation. 

1 10 100 1000100

101

102

103

104

105

106

107

108

109

 K = 500
 K = 200
 K = 100
 K = 50
 K = 20
 K = 10
 K = 5
 K = 2

 

 

a

N / D  

Figure 3.  Acceleration obtained by DSIE. 

The diakoptic formulation is most efficient when all 
subsystems are congruent. Nevertheless, it can also be 
used efficiently when subsystems are non-congruent. 
Partitioning into subsystems can also be performed using 
multilevel (nested) schemes. The diakoptic formulation 
can be implemented on parallel processors, so that 
subsystems are analyzed simultaneously. Nesting and 
parallelization further increase the efficiency of the DSIE 
formulation. 

V. NUMERICAL EXAMPLES 
The aim of examples presented in this section is to 

demonstrate the efficiency that can be achieved using 
DSIE, i.e., the acceleration and the storage reduction when 
compared to the classical MoM-SIE solution. The 
accuracy of the diakoptic approach is also considered. 

A. 2-D Electrostatics 
The first example demonstrates the diakoptic approach 

in conjunction with the 2-D electrostatic analysis. The 
structure is a motherboard bus with 16 microstrip lines 
located in a vacuum. The cross-section is shown in Fig. 4. 
The widths and heights of all strips are identical, 

mm 3=w  and mm 5.0=h , respectively. All strips are 
infinitely thin. The separation among neighboring strips is 

mm 3=s . There are 256 unknowns per each strip, i.e., 
4096 unknowns for the whole structure. The cross-section 
of the subsystem boundaries for the diakoptic approach is 
colored gray in Fig. 4. There are 17 subsystems in total: 16 
of them consist of a single strip along with encompassing 
walls, while the last one is the outer space. The height of 
the encompassing wall is mm 5.1=H  while its width is 4 
times larger. The total number of pulses for the wall 
contour is D . Since this is the open-region problem, the 
last subsystem is computationally the most complex one. 

 

Figure 4.  Cross-section of the bus with 16 microstrips in a vacuum. 

The maximal relative error in the matrix of electrostatic 
induction coefficients [B], and the acceleration are in 
focus. Results are summarized in Table 1. The first 
column of the table is the number of diakoptic unknowns 
around one strip, the second column is the maximal 
relative error, and the last column shows the acceleration. 

The results in Table 1 show that the diakoptic approach 
provides very large CPU time improvement. For the 
maximal relative error on the order of 10–2 (1%) the CPU 
time improvement is about 2000 times. 

TABLE 1: ACCELERATION AND ERROR OF DIAKOPTIC APPROACH. 
D Maximal relative error Acceleration 
5 2.8e–2 2532 

10 8.3e–3 1758 
20 2.6e–3 711 
40 8.1e–4 108 
80 2.6e–4 14 
120 8.4e–5 1.8 

B. 3-D Electrostatics 
The second example demonstrates the diakoptic 

approach in conjunction with 3-D electrostatic analysis. 
The geometry of the analyzed system is shown in Fig. 5a. 
It consists of two square metallic plates (the side is 

mm 40 ), located on the surface of a dielectric slab 
( mm 2mm 240mm 160 ×× ). The relative permittivity of 
the dielectric is 5r =ε . In the classical approach, the 
system is analyzed by formulating a set of integral 
equations for the total charges (free plus bound charges) 
as in [5], [30], and solving the equations using MoM with 
a piecewise-constant approximation for the charge 
distribution on a set of triangles. Thereby, each metallic 
plate is divided into 400 triangles, and the dielectric-to-
vacuum interfaces are divided into 2800 triangles. 

In the diakoptic analysis, the system is divided into 
three subsystems, as shown in Fig. 4b-d. The two interior 
subsystems are congruent. Each subsystem contains one 
metallic plate and a part of the dielectric slab. The 
diakoptic boundary is a rectangular box (which is patched 
into D triangles). The diakoptic surfaces for these two 
subsystems share a common wall. The exterior subsystem 
contains a part of the dielectric slab because the diakoptic 
surfaces intersect the slab at a distance of mm 20  from the 
edges of the metallic plates. 
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Figure 5.  Two metallic plates on dielectric slab: (a) original system, 
(b) exterior diakoptic subsystem, and (c), (d) interior diakoptic 

subsystems. 

For the number of triangles on a diakoptic surface 400 , 
the relative error is 1%, the acceleration is 3≈a  times, 
and the memory reduction is slightly greater than 1. This 
example demonstrates that the diakoptic boundaries of the 
subsystems can cut the original EM structure without 
compromising the final results. 

C. 2-D Electrodynamics 
The third example demonstrates the diakoptic approach 

in conjunction with 2-D TM electrodynamic analysis. For 
the purpose of comparison, the matrix parameters for a 
multiconductor line are calculated by the classical analysis 
and by the DSIE formulation. A flat cable with 26 
identical conductors is used as a real-life example of 
multiconductor transmission lines. The cross-section of 
the cable is shown in Fig. 6. The radius of a conductor is 

mm 254.0c =r . The radius of a dielectric coating is 
mm 4.0d =r . Conductor axes reside in one plane with the 

spacing mm 1=p . The PVC dielectric coating is lossy, its 
relative permittivity is 3.3r =ε , and the loss tangent is 

005.0tan =δ . The conductance of conductors is 
MS/m 56=σ  (copper). The permeability is 0μ=μ  

everywhere. The matrix parameters for the cable are 
calculated at MHz 1=f , where the skin-effect is already 
pronounced. 

In the classical electrostatic analysis, we take equal 
numbers of uniform pulses per the circumference of each 
conductor and dielectric coating. The total number of 
unknown coefficients (for the total charges) for one 
conductor and its coating is a) 64=N  and b) 192=N . In 
the classical TM dynamic analysis, the total number of 
unknown coefficients for the electric and magnetic 
currents for one conductor is a) 64=N  and b) 192=N  
(the same as in the electrostatic case). 

In the DSIE analysis, the system is partitioned into 27 
subsystems: 26 consist of one conductor with the 
dielectric coating, while the last subsystem is the 
remaining infinite region. The diakoptic boundary surfaces 
are placed coaxially with the conductors. The cross-
section of a diakoptic surface is taken to be a square 
whose side is mm 9.0=w  (Fig. 6). Consequently, we 
have 26 congruent subsystems, each consisting of a 
conductor, its coating, and a diakoptic boundary. The last 
subsystem consists of the outer region and the union of all 
diakoptic boundaries. The patching scheme for the 
subsystems is the same as for the classical MoM analysis. 
The total number of uniform pulses per circumference of a 
diakoptic surface, M , is varied. In both the classical SIE 
and the DSIE analysis, the last (26th) conductor is the 
reference. 

rcrd

1 2 26

p

w

w

ε ,0 μ0

σ,μ0

ε ,μ0

conductor
dielectric
diakoptic  

Figure 6.  Cross section of a flat cable. 

The accuracy of the DSIE formulation, compared to the 
classical SIE analysis, is estimated using the maximal 
relative error for matrices [ ]'B  and [ ] [ ] [ ]'j'' LRZ ω+= . The 
maximal relative error for matrix [ ]'B  is calculated as 

[ ] ⎟
⎠
⎞⎜

⎝
⎛ =−=δ 25,...,2,1,,max' SIEDSIESIE jibbb ijijijB , where 

SIE
ijb  is the element in the th-i  row and th-j  column of 

matrix [ ]'B  calculated by the MoM-SIE analysis and 
DSIE
ijb  is the corresponding element calculated by the 

DSIE analysis. (Errors in matrices [ ]'B  and [ ]'G  
practically coincide.) The maximal relative error for 
matrix [ ]'Z  is calculated in the same manner. 

The CPU time and the occupied memory were 
measured for the classical SIE analysis and the DSIE 
formulation. The acceleration of the DSIE formulation is 
calculated as DSIESIE tta =  and the memory efficiency is 
calculated as DSIESIE ssm = .  

Results are shown in Fig. 7. The maximal relative error 
(Fig. 7a), the acceleration (Fig. 7b), and the memory 
efficiency (Fig. 7c) are plotted versus M . A small value 
of M is sufficient to provide a very good accuracy. 
Increasing M  decreases the maximal relative errors in 
matrices [ ]'B  and [ ]'Z , but also decreases the acceleration 
and the memory efficiency. The results verify that the 
DSIE formulation is more efficient for subsystems that are 
more complex.  

Comparison of results shown in Figs. 7b and 7c with 
the corresponding estimations (4) and (5), for 2=α , 
shows that the estimations agree fairly well (within 50% 
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for 32≤M ) with the measured results.  

 

Figure 7.   Comparison between DSIE and classical SIE for electrostatic 
(stat) and TM dynamic (dyn) analyses: (a) maximal relative error, 

(b) acceleration, and (c) memory efficiency. 

D. 3-D Electrodynamics 
The last example demonstrates the diakoptic approach 

in conjunction with 3-D electrodynamic analysis. It is a 
scatterer that consists of 1250 identical metallic cubes 
grouped in 10 clusters (Fig. 8a). A cluster consists of 125 
( 555 ×× ) metallic cubes (Fig. 8b). The side of a cube is 

mm 1=a . The distance between neighboring cubes in a 
cluster is mm 1=d  in the x , y , and z -directions. The 
distance between neighboring clusters is mm 6=p  in the 
y - and z -directions. The illuminating EM wave arrives 

from the direction 0=φ , 0=θ . The rms value of the 
incident electric field is V/m 1=E  and the electric field 
vector is parallel to the z-axis. The frequency of the 
incident EM wave is GHz 15=f . The electrical length of 
the cube side is 20/λ , where λ  is the free-space 
wavelength. The dimensions of one cluster are 

20/920/9 λ×λ , and the dimensions of the whole scatterer 
are λ×λ×λ 25.15.320/9 . The number of the unknown 

coefficients (for the electric current expansions) for one 
metallic cube is 12, which amounts to 000 15tot =N  for 
the whole scatterer. 

For the DSIE approach, the scatterer is divided into 11 
subsystems. The first one consists of the outer space and 
the diakoptic boundaries of the other 10 subsystems 
(Fig. 7a). The remaining 10 subsystems are congruent. 
Each of them consists of a cluster of 125 cubes wrapped 
by a diakoptic boundary (Fig. 7b). The diakoptic boundary 
is a cube of a side mm 11=b . The total number of the 
unknown coefficients for the current expansions of the 
equivalent electric (magnetic) currents on the diakoptic 
boundary is 192=D  and for the encapsulated cluster is 

1500=N . Since we have 10 congruent subsystems, their 
diakoptic matrices are identical. Therefore, we solve only 
two subsystems with MoM/SIE: the exterior one and one 
of the interior subsystems. 

The RCS calculated with the classical MoM/SIE and the 
DSIE formulations is shown in Fig. 9 for the cut o2=θ . 
The results calculated using DSIE and MoM/SIE match 
very well. 

The simulation of the whole scatterer at once using 
WIPL-D [6] out-of-core solver lasts s 7615SIE =t  on a 
32-bit desktop PC with 1 GB of RAM. On the same PC, 
the DSIE simulation takes s 624DSIE =t . Therefore, the 
achieved acceleration is 2.12=a  times. This result is 
somewhat conservative since the non-optimized diakoptic 
code is compared to a professional and highly optimized 
commercial code [6]. The estimated acceleration from eqn. 
(4) is 6.177=a . 

To store the MoM/SIE matrix of the whole scatterer 
(double precision complex numbers) takes 

GB 6.3SIE =m . That amount of memory was not available 
and for that reason the out-of-core solver was used. The 
largest matrix that is stored in the DSIE approach is the 
MoM matrix for the first subsystem (1920 coefficients). It 
takes MB 59DSIE =m . Therefore, the storage reduction in 
this example is 61=m  times. 

 
(a) 

 
(b) 

Figure 8.   (a) The exterior subsystem and (b) one of 10 congruent 
interior. 
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Figure 9.  RCS calculated using DSIE vs. classical MoM/SIE: θ-cut. 

VI. CONCLUSION 
The diakoptic surface integral equation formulation is 

developed for efficient modeling of complex and large 
electromagnetic-field problems. The performance of the 
proposed technique has been demonstrated on various 
examples. Significant acceleration and storage reduction 
are achieved when compared to the classical solution of 
surface integral equations using the method of moments. 
Along with achieving the remarkably improved 
performance, the accuracy of the results is kept within 
acceptable limits. 

The future work will include investigation of diakoptic 
boundaries with common walls, application of DSIE to 
optimization of complex EM structures and calculation of 
EM time-domain responses, and hybridization with other 
numerical techniques, such as finite elements and volume 
integral equation formulations. 
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