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Abstract — In this paper a novel non-invasive procedure 

will be presented to determine nonlinear binary multi-input 
multi-output (MIMO) integrated circuits (ICs) solely by their 
input-output behaviour. The algorithm identifies unknown 
CMOS ICs through the abstraction of traditional automata 
theory. The entire determination procedure was simulated 
and fully tested on IEEE ISCAS benchmark models as well 
as user defined models of real ICs. The results obtained will 
be presented in this paper. For every circuit analysed the 
function has been successfully determined by the novel 
identification procedure proposed. 
 

Keywords — Deterministic Automata, Non-Invasive 
Reverse Engineering, Unknown CMOS ICs. 

I. INTRODUCTION 
NTIL now the investigation of unknown CMOS 
integrated circuits is an important part in reverse 

engineering. However, several destructive [1], [2] and 
non-destructive procedures have been developed [3], [4] 
to identify the internal function and structures. Current ICs 
consist of very complex structures with a great variety of 
functions and different behaviours. Since these functions 
are not always known it can be essential to correctly 
determine their behaviour. This is required when the label 
is lost or it is necessary to find out more about the internal 
structure of the integrated circuit. Furthermore, it is 
conceivable to use structures of discontinued ICs in new 
IC designs or to add new functionality to an existing 
system. 

To make a structured analysis of these ICs possible the 
overall analysis must be divided into different parts. The 
determination of pin types is the first analysis step which 
was described in detail in [6]. This is followed by a 
preliminary investigation of the IC under test which results 
in combinatorial, sequential linear or sequential nonlinear 
behaviour as described in [7]. Here, it was demonstrated 
that a real IC can be abstracted using the model of 
automaton [8]. A large number of unknown ICs have a 
nonlinear behaviour. Therefore, this paper will discuss the 
specific problem of the identification of unknown 
nonlinear CMOS ICs represented by sequential 
deterministic finite state machines. The overall 
identification procedure consists of three parts. The 
separation into Moore or Mealy automaton will be 
described in Section II. Afterwards, the preparation 
algorithm will be explained in Section III, while the 
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identification algorithm will be described in detail in 
Section IV before the results are presented in Section V. 

II. SEPARATION INTO MOORE OR MEALY AUTOMATA 
The separation into Moore or Mealy is the first step of 

the overall identification procedure. It is an important 
improvement of this novel procedure compared to other 
methods to significantly simplify the following analysis 
steps. The different behaviour of Moore and Mealy 
automata is used for a general classification. The output of 
a Moore automaton only depends on the internal states. 
Additionally, if the storages and the inputs are connected 
by combinatorial circuitry the automaton is of type Mealy. 

The test run is started while a random input word is 
applied and then a clock pulse is given to the circuit under 
test. After this step, the first input word (‘0’) is applied to 
the automaton and the resulting output word is stored. In 
the following loop all other input words are applied to the 
circuit while no clock pulse is applied. The output words 
which appear are compared to the stored one and in case 
of any differences the automaton is classified as a Mealy 
automaton and the procedure is finished. If all output 
words are identical then the next random step is made until 
the maximum number of cycles is reached. If the last cycle 
is executed and no variance in output words was found, 
the automaton will be considered as a Moore automaton 
during the following analysis. 

III. PREPARATION ALGORITHM 
After the type of the automaton was determined the 

identification algorithm is prepared by several process 
steps. The identification procedure must firstly find one 
initial state of the automaton. In the simplest case the 
initial state can be reached by a reset pin control. In other 
ICs the reset can be carried out by disconnecting the 
power supply. However, if such a reset capability does not 
exist an initial state can also be found using suitable 
process steps by applying input combinations which will 
be not described in this paper. After an initial state is 
found the preparation can be carried out. 

First, the information about the input-output words 
(OWs) or input-output word combinations (OWCs) are 
gathered. These sets are recorded as shown in 
Equation (1). 
 { } ( ) ( )

{ } ( ) ( )
1 : 1 ; ;
2 : 1 ; ;

Moore OW t IW OW t
Mealy OWC t IW OWC t

−
−

 (1) 

If the analysis has identified a Moore automaton set {1} 
is used. Set {2} is used in the case of a Mealy automaton. 
The following steps and parts of the algorithm are 
explained for a Mealy automaton and are carried out in an 
analogous manner for Moore automata. However, for a 
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Moore automaton only a single output word is processed 
instead of all output word combinations. 

The different states are separated relative to their 
detected differences in their output behaviour before the 
identification algorithm is started. Therefore, random input 
words are applied and a clock pulse is applied afterwards. 
In regular intervals a reset is applied to resettable automata 
to restart the algorithm from initial states. The previous as 
well as the following output word are recorded at each 
step. Additionally, the input word which has caused the 
step is stored. Repeating combinations of these three 
values are not saved. However, all differences are 
collected using the described procedure. At always the 
first OW(t-1) the change of the OW(t) to multiple 
applications of different input words is investigated and is 
used for the result. If the current output word has two or 
more following output words when the same input word is 
applied then the number of these output words relates to 
the minimum number of states which share the first output 
word. This is valid for deterministic automata. 

Each information set as illustrated in Equation (1) is 
checked if it has already occurred. If it has not it is added 
to the current list. The number of output words found is 
stored. The number of states, the output words, the input 
words and the type of the automaton are the basic 
information. The combinations are checked for their first 
output word. Due to their order each alteration implies a 
new output word. If entries exist where at any time input 
words and output words are equal but the following states 
are different, then the list is rearranged. The detection of 
such entries is proof that a minimum of two states exists 
with the same output word. The input word, which causes 
most output words following a particular output word, is 
labelled as most significant input word (MSIW). Again, 
there is no targeted search for an output word which 
means that the gathered output words are caused by the 
randomly applied input words. Furthermore, this number 
is the number of detected distinguishable states. With the 
help of the most significant input words it is possible to 
separate states that have the same output word and the 
same input word is applied but the following output word 
is a different one. For instance, if there would be three 
such entries there will be at least three states related to this 
output word. 

After all entries are made the information is interpreted. 
Therefore, the data structure is reduced to the most 
significant input words and their significances. Here, 
significance means the number of expected states when 
applying the related most significant input word. The total 
number of found differences forms the number of securely 
distinguishable states. This means, that it is possible to 
compare two sets of OW(t-1); IW; OW(t) for a Moore 
automata or OWC(t-1); IW; OWC(t) for a Mealy automata 
there is no difference in the actual sets but only in the 
result of the investigation. The use of a number of 
distinguishable states severely reduces the necessary 
investigation depth of the integrated circuit. Equation (2) 
shows the calculation of the number of distinguishable 
states (NoDS). If this number is equal to the real number 
of states, then the automaton can be identified directly. 
Otherwise, it is not possible to determine the automaton in 
only one step. 

 
MSIW

NoDS significance= ∑  (2) 

The classification into Moore or Mealy automata as 
well as the consideration of the number of distinguishable 
states are important parts of the analysis procedure. The 
preparation results are used to fully solve such problems 
through the identification algorithm which will be 
described in the next section. 

IV. IDENTIFICATION ALGORITHM 
After the initial investigation of the unknown IC the 

identification algorithm is carried out which is the major 
part of the analysis procedure for nonlinear FSMs. It 
consists of several blocks and works similar for Moore 
and Mealy automata. Figure 2 schematically shows the 
identification algorithm. 

First, the required length of the investigation tree is 
determined. This state tree length is important to record 
the state transitions and to afterwards correctly identify the 
unknown IC. After the determination of the tree length the 
IC under investigation is checked if a reset capability 
exists or an entry point can be determined. Then the 
algorithm queries the solution type. These are the fast or 
the slow identification. Basically, both the fast and the 
slow analysis are equivalent. Usually, the IC under test is 
analysed using a fast identification. However, in case of 
insufficient RAM it is not possible to process the 
algorithm using the fast identification. Therefore, it 
automatically switches to the slower solution which uses 
less memory but requires more evaluation time. 

 

 
Fig. 2. The Identification Algorithm. 

 
The maximum number of states needs not to be known 

to proceed with the algorithm. In most cases the number of 
states can be calculated using several iterations. The initial 
value can be either given by the user or is determined from 
the number of distinguishable states (NoDS). If the real 
number of states is not known the number of 
distinguishable state for the initial value can be calculated 
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as NoS = NoDS + 2. The added two is based on the fact 
that it is the number of guessed and not identified states. 
This number can be chosen in a free range. If a higher 
value is chosen the likelihood increases to find 
distinguishable states in each identification cycle which 
would previously have not been detected. At the same 
time the investigation complexity increases. If the addend 
2 is too high this advantage could be lost. The iteration to 
the real number of states is carried out after each cycle of 
the identification algorithm. Again, the addend two is a 
selectable value which function was previously described. 
The idea behind the identification of unknown ICs is 
similar to the general classification of states using the data 
prepared in the previous determination of the number of 
distinguishable states. Using deterministic automata a state 
has to have the same response at the output caused by the 
same input word which means a jump to the following 
state. If two states differ in their internal bit combination 
but always respond equally at the outputs then the 
algorithm identifies these states as only one state. With 
this, the automaton is not only identified but also reduced. 
Several states can share the same output word. This is 
valid for all output words. Therefore, it is possible that all 
output words of two states are identical without any 
redundancy. For a final distinction of states their state 
trees are investigated. A state tree contains information of 
particular output words which are causes by the respective 
input word applied. As previously described the 
evaluation of the following output word is an adequate 
further distinctive feature. Therefore, all following output 
words (FOWs) of the previous final points are also 
gathered. This classification is continued until the 
significance of the trees is sufficient to clearly separate 
occurring states. Traditional solutions require the 
knowledge of the maximum number of states [3]. This is 
an essential disadvantage as the maximum number of 
states is not available in practice. However, the restriction 
to resettable automata or automata with a definable entry 
point provides the possibility to determine the number of 
states using an iterative approximation without any 
knowledge of the real number of states. More precisely if 
the initial value is predefined then the solution of the 
investigated unknown automata is found faster. As 
previously described the initial value can be either given 
by the user or is derived from the number of 
distinguishable states. In this case the number of 
distinguishable states represents the minimum number of 
states. A predefined number of states is added to this 
number of distinguishable states. From this predefined 
number it is expected that many other similar states exist, 
which are not distinguishable by only one step. The length 
of the state trees is calculated as illustrated in 
Equation (3). 
 2treelength NoS NoDS= − +  (3) 

The added two is based on the fact that two output 
words form a pair at the rough classification of states. 
Here, a preliminary reduction is possible because the 
states are compared in relation to their current output word 
as well as their following output word. For a general 
discrimination two output words are required at time t and 
at t + 1 after one step. Here, the maximum tree length is 

detected if either a difference occurs or the states are 
identical or redundant. Each state found can be reached 
again, because the path from the initial state to the related 
state is recorded if the state is identified as a new state. 
The states in these trees will only together cause the same 
output word if the states which the trees belong to are 
identical. If they are not identical then there will be 
discrepancies in the output words that render it possible to 
identify the different states. Once again the following 
output words of the last branch of both trees are compared 
and the discrepancies are found. Two states are not 
redundant if they differ in at least one following state 
regardless if this is distinguishable from the output word 
or not. Passing through the complete state trees a 
difference to all other states will occur due to this 
condition. Each state found can be retrieved because the 
path from the initial state to the considered state is saved if 
it is recognised as a new state. If the state has to be 
reached again the automaton must be reset. From the 
initial state the desired state is retrieved. The state tree is 
recorded while passing from the current investigated state 
to the end of the tree. During this process all output words 
are saved. If the end of the branch is reached the 
automaton is reset and the next branch is investigated. By 
applying all possible input words step-by-step a tree is 
subsequently generated. Each tree consists of a number of 
branches, where each branch differs in a minimum of one 
input word. Beginning with the initial state each state is 
investigated towards its following states. Whenever a new 
state is found the related output word, the tree and its 
position relative to its initial state is recorded. For each 
state and for each input word the following state is 
determined. The different output words of each state tree 
are stored in an array.  

The required length of the array is calculated as in (4). 
 1

0

treelength
n

treearray
n

length NoIW
−

=

= ∑  (4) 

Each output word in this array is controlled by a 
sequence which is stored in another path array. The 
position of the output word can be determined from 
Equation (5). 
 

( )
0

1

0

1n n

position

position patharray n position NoIW−

=

= + + ×⎡ ⎤⎣ ⎦
 (5) 

At the position where n is equal to the length of the path 
array the wanted output word is located. Because of this 
structure the input words need not to be stored. Therefore, 
its tree is recorded and compared with all already recorded 
trees. If the tree is identical then the previously recognised 
state is entered as the following state. Otherwise, a new 
state is generated and recorded as the following state. As 
soon as the last found state is investigated towards its last 
following state the automaton is fully determined. 

V. RESULTS 
The theory presented in this paper was verified using 

both simulation and real hardware tests. The IC models [5] 
were analysed having unknown as well as known number 
of internal states using MATLAB [9]. The following 
tables will show the results of the simulation and the 
hardware analysis of the nonlinear identification 
procedure. Furthermore, for each model the result with 
unknown as well as known number of states is shown. 
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TABLE 3 first shows the results where NoFS is the number 
of states found. Moreover, the state transition table is STT 
and the output function is represented by OF. Here, the 
number of internal states of the IC models to be 
investigated is unknown. 

TABLE 3: RESULTS OF HARDWARE ANALYSING USING 
UNKNOWN NUMBER OF STATES. 

IC 
Name 

Type of 
FSM 

FSM 
Found NoS NoFS STT 

Found? 
OF 

Found? 
Evaluation 

Time 

EC1 Mealy Mealy 1 1 yes yes 7713,6s 
= 2,14h 

ELS1 Mealy Mealy 8 8 yes yes 62110,0s 
= 17,25h 

ENLS1 Mealy Mealy 8 8 yes yes 62127,0s 
= 17,26h 

S27 Mealy Mealy 5 5 yes yes 615580,0s 
= 7,12d 

B06 Moore Moore 13 13 yes yes 11456s 
= 3,18h 

As can be seen in TABLE 3 for each benchmark circuit 
the presented algorithm found the correct type of IC. The 
evaluation time in the right column shows that about one 
week is needed to identify the complex benchmark S27. 
The other IC models can be determined in less than a day. 
However, it is even possible to identify the expected state 
transition table as well as the correct output function. 
TABLE 4 presents the simulation results using unknown 
number of internal states of the IC models to be 
investigated. 

TABLE 4: RESULTS OF SIMULATION USING UNKNOWN NUMBER 
OF STATES. 

IC 
Name 

Type of 
FSM 

FSM 
Found 

NoS NoFS STT 
Found? 

OF 
Found? 

Evaluation 
Time 

EC1 Mealy Mealy 1 1 Yes yes 13,6s 

ELS1 Mealy Mealy 8 8 Yes yes 73,4s 
ENLS1 Mealy Mealy 8 8 Yes yes 70,7s 

S27 Mealy Mealy 5 5 Yes yes 636,2s 
B06 Moore Moore 13 13 Yes yes 17,2s 
C17 Mealy Mealy 1 1 Yes yes 2378,7s 

= 39,6min 

TABLE 4 shows that the algorithm found the correct 
type for all unknown ICs under investigation. Moreover, 
the correct number of states was also always found. 
Hence, the correct state table as well as the correct output 
function were in all cases successfully determined. 
However, the algorithm introduced was developed to 
analyse nonlinear FSM. As can be seen from TABLE 4 
combinatorial as well as linear sequential FSM can also be 
identified using the novel algorithm. Furthermore, the 
evaluation time in the right column shows that the 
simulation is accomplished within less than an hour for 
even complex circuits. In the case that the exact number of 
states is known both the hardware analysis shown 
TABLE 3 as well as the simulation as presented TABLE 4 
was used. Therefore, the same implementations were 
analysed with known number of states instead the initial 
number of states equal to zero. First, TABLE 5 presents the 
hardware models analysed using the known number of 
states. From TABLE 5 it can be seen that in each case the 
nonlinear detection algorithm found the correct type of the 
unknown IC. 

TABLE 5: RESULTS OF HARDWARE ANALYSING USING 
KNOWN NUMBER OF STATES 

IC 
Name 

Type of 
FSM 

FSM 
Found NoS NoFS STT 

Found? 
OF 

Found? 
Evaluation 

Time 

EC1 Mealy Mealy 1 1 Yes yes 282,7s 
= 4,7min 

ELS1 Mealy Mealy 8 8 Yes yes 39124,0s 
= 10,9h 

ENLS1 Mealy Mealy 8 8 Yes yes 39117,0s 
= 9,9h 

S27 Mealy Mealy 5 5 Yes yes 466562,0s 
= 5,4d 

B06 Moore Moore 13 13 Yes yes 2758,0s 
= 46,0min 

In comparison to the hardware analysis using an 
unknown number of states the identification using known 
number of states is 1,3 times faster. Here, no 
approximation of the number of states is necessary. 
Furthermore, the analysis identified the expected state 
transition table as well as the output function. TABLE 6 
shows the simulation results using known number of 
states. 

TABLE 6: RESULTS OF SIMULATION USING KNOWN 
NUMBER OF STATES 

IC 
Name 

Type of 
FSM 

FSM 
Found NoS NoFS STT 

Found? 
OF 

Found? 
Evaluation 

Time 

EC1 Mealy Mealy 1 1 Yes Yes 0,355s 

ELS1 Mealy Mealy 8 8 Yes Yes 34,3s 

ENLS1 Mealy Mealy 8 8 Yes Yes 34,0s 
S27 Mealy Mealy 5 5 Yes Yes 8,74s 

B06 Moore Moore 13 13 Yes Yes 2,94s 

From TABLE 6 it can be seen that the nonlinear 
algorithm firstly investigates the type of automaton. 
Afterwards, the state transition table as well as the output 
function of the unknown IC were analysed. From all result 
tables presented TABLE 6 exhibits the lowest evaluation 
times of the IC models analysed. This can be explained 
that in this case the number of states was known prior to 
simulation. 

VI. CONCLUSIONS 
All analysis steps described were implemented into the 

MATLAB. The correct operation was verified through the 
implementation of several IEEE benchmark ICs as well as 
user defined IC models. The procedure described 
successfully solves the identification problem for the first 
time. Therefore, in conclusion this paper has presented a 
novel non-invasive reverse engineering procedure for 
structured analysis of deterministic sequential finite state 
machines in unknown CMOS ICs. 
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