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Control Design of a Positioning System upon a Fault Tolerant Multisensor
Scheme

F. Stoican†, S. Olaru†, M. Nesic‡ and S. Marinkovic‡

Abstract— The present paper deals with a fault tolerant
control scheme for a multisensor plant under the assumption of
bounded noises. A practical example, concerning a positioning
system is detailed. Robust guarantees for the global stability
of the system and the separability and identification of abrupt
faults occurring in the sensor outputs are provided.

I. INTRODUCTION

As it is usually the case with the diversification and
miniaturisation with low cost solutions, components are pre-
disposed to failures. For multisensor schemes, the presence
of faults is manifested by the alteration of the estimations
of the features of interest. The control strategy has to be
equipped with fault detection capabilities in order to avoid
the construction of the control action based upon erroneous
feedback information.

Multisensor schemes have originated substantial research
on the aggregation of the information available from the
plant in order to improve reliability and robustness. Sensor
fusion has been one of the techniques traditionally employed
in multisensor schemes where the construction of improved
estimators is the main concern [1], [2], [3].

By contrast, robust fault diagnosis procedures are less
often found in literature. An example is [4] and, more
recently, multisensor switching feedback control strategies
with fault tolerance guarantees were presented in [5].

In the present paper, a multisensor scheme, similar in
design with the one detailed in [5] will be implemented upon
the practical example of a positioning system. A FDI (Fault
Detection and Isolation) mechanism which assures the robust
selection of healthy sensors for the feedback loop design will
be used. Set membership techniques, based on the invariant
sets studied in [6] will be used.

The following notations will be used throughout the paper.
N denotes the set of nonnegative integers; N+ denotes the set
N \{0}. Whenever time is unspecified, a variable x stands
for x(k) for some (unspecified) k ∈ N, and x+ stands for
the successor variable, i.e. x(k+ 1). The Minkowski sum of
two sets is defined as A⊕B = {a+ b : a ∈ A and b ∈ B}.

The class of polyhedral sets understood as intersections
of a finite number of half spaces will be used extensively in
this paper. A polytope is a closed and bounded polyhedra.

The remainder of the paper is organised as it follows.
Section II introduces the multisensor control structure. Sec-
tion III details the invariant sets required in the fault tolerant
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Fig. 1: Multisensor control scheme

scheme, Section IV describes the fault tolerant switching
control scheme. In Section V an application is presented and
Section VI draws some conclusions.

II. PLANT DYNAMICS AND FAULT SCENARIO

The multisensor control scheme considered in the present
paper is a linear discrete-time state space model of the plant:

x+ = Ax+Bu+ Ew (1)

where x ∈ Rn and x+ ∈ Rn are, respectively, the current
and successor system states, u ∈ Rm is the input, and w ∈
W ⊂ Rr is a bounded process disturbance. Matrix A is
assumed to be invertible (this is always the case if system
(1) corresponds to the exact discretization of an underlying
continuous-time system) and the pair (A,B) is controllable.

The control objective is for the state of the plant (1) to
track a reference signal xref that satisfies

x+
ref = Axref +Buref (2)

The state reference is considered to be bounded by the closed
polyhedral set Xref ⊂ Rn.

We will use a multisensor switching scheme with plant P ,
sensors S1, . . . , SN , estimators F1, . . . , FN (see Figure 1).

A. Sensor and estimator dynamics

The state vector x is not directly measurable, but linear
combinations of it, Cix, i = 1, . . . , N can be measured via
N sensors. The sensors are considered to have no dynamics
and their output signal is:

yi = Cix+ ηi (3)
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The sensor faults considered in this paper are considered
to be abrupt, that is the fault manifests itself in the fact that
the output no longer carries information about the sensor
state. The observation equation thus, becomes:

yi = ηFi (4)

The noise occurring during the fault, ηFi ∈ NF
i ⊂ Rp,

may be different from the one during the healthy functioning,
ηi ∈ Ni ⊂ Rp. Without any loss of generality the bounded
sets of disturbances w, ηi and ηFi , for i = 1, . . . , N are
considered to be bounding boxes.

The estimators are designed such that they will have an
adequate dynamic behaviour for the plant state estimate:

x̂+
i = (A− LiCi)︸ ︷︷ ︸

ALi

x̂i +Bu+ Liηi (5)

with the gains Li chosen such that matrices ALi
are strictly

stable (always possible by the detectability assumption).
Using (1) and (5) one can define the estimation errors

affecting the sensor:

x̃+
i = x+ − x̂+

i = ALi
x̃i +

[
E −Li

] [w
ηi

]
(6)

The tracking errors are given by the difference between
the state and their respective reference signal:

z+ = x+ − x+
ref = Ax+B (u− uref )︸ ︷︷ ︸

v

+Ew (7)

To alleviate sharp changes in the value of the reference
signal, the update estimations are provided:

x̂UPi = x̂i +Mi

(
yi − Csi ξ̂i

)
with matrices Mi determined from equation

ALi
Mi = Li (8)

B. Closed loop dynamics

The fault tolerant scheme works under the assumption that
only healthy sensors will be used in the control law design.

Through a FDI mechanism, detailed in Subsection IV we
are able to identify and select only the healthy, (understood
as a sensor with a healthy functioning in the sense of (3)
and for which the estimation error (6) is confined in a safety
region) sensors and from them, an index can be chosen as
the minimiser of a given cost function:

ẑ∗ = min
i∈IH

J
(
ẑUPi

)
(9)

further, the control action has the form:

u = uref + v∗ = uref −Klẑ
∗ (10)

The feedback gain can be, for example, computed as the
solution to a Riccati equations for a given set of tuning
parameters.

As a consequence of the selection of a healthy sensor, by
using (3), (7) and (8), we have

ẑUPl = z − (I −MlCl) x̃l +Mlηl (11)

and, the control action (10) can be expressed as

u = uref−KẑUPl = uref−BK (z − (I −MlCl) x̃l +Mlηl)
(12)

III. INVARIANT SETS

The fault tolerant scheme implemented requires the use
of invariant sets. Usually, such a construction may prove
computationally difficult [7]. In this paper, a useful con-
struction, detailed in [6] and extensively used in [5], will
be used to obtain RPI (robust positively invariant) sets for
the signals of interest. In the following the sets corresponding
to the estimation error (6) and plant tracking error (7) will
be constructed.

A. Estimation error

For the dynamics (6) one can obtain, for i = 1, . . . , N ,

S̃i(ε) =
{
x̃i ∈ Rn :

∣∣V −1
i x̃i

∣∣ ≤
(I − |Λi|)−1

∣∣V −1
i

[
E −Li

]∣∣ [ w̄
η̄i

]
+ ε

}
(13)

with Λi and Vi given by the Jordan decomposition A −
LiCi = ViΛiV −1

i , and w̄ and η̄i bounds for the sets of
uncertainties, respectively, W and Ni.

B. Plant tracking error

Using (1), (2), (6), (7) and (12) we have:

z+ = Az,lz +Bz,l

wx̃l
ηl

 (14)

with Az,l = A − BlKl, Bz,l =[
E BlKl (I −MlCl) BlKlMl

]
. For dynamics (14)

one can obtain

Sz(ε) =
{
z ∈ Rn :

∣∣∣V −1
z,l z

∣∣∣ ≤
(I − |Λz,l|)−1

∣∣∣V −1
z,l Bz,l

∣∣∣ [ w̄
¯̃xlη̄l

]
+ ε

} (15)

with Λz,l and Vz,l given by the Jordan decomposition Az,l =
Vz,lΛz,lV −1

z,l , and w̄, ¯̃xl and η̄l bounds for the sets of
uncertainties, respectively, W , the bounding box maximum
of set (13) and Nl.

IV. FAULT TOLERANT SCHEME

A. Separation

From the classical fault detection and isolation point of
view ([8]), a signal called a residual, sensitive to fault
occurrences and with a manageable dependence on the dis-
turbances can be defined for the detection of faults. Indeed,
the presence of faults implies a modification in the dynamic
equation of the corresponding estimator which thus carries
information on the fault signature.

As such, the residual signal

ri = ẑUPi − (I −MiCi) ẑi (16)

composed from all the measurable quantities associated to
the ith sensor can be defined, and from (3) and (4) we find
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that the sets inside which resides, for the healthy, respectively
the faulty cases are

SHi = MiCiSz ⊕MiNi

SFi =
{
−MiCiSxref

}
⊕MiN

F
i (17)

In the rest of the paper, an explicit separation will be used
in order to guarantee the separation. As it can be seen in
Figure 2 there are cases in which the separation must be
considered pair by pair, for each sensor in order to ascertain
the sensor state. At each instant of time the residual signal
(16) of a sensor will be verified against the sets (17). If the
sensor is deemed to be faulty, it will be discarded from the
sets of selectable sensors. It will no longer be used in the
construction of the command law.

Fig. 2: Sensor separation

One can remark that at each moment of time only one
sensor is selected into the design of the command law thus
discarding the redundant information provided by the other
healthy sensors. This contrasts with fusion schemes which
use stochastic techniques in combining the information of
all the available sensors. The advantage of the robust scheme
presented here resides in that the information provided by a
faulty sensor will never be used by the command law.

V. PRACTICAL EXAMPLE

In the following, a position control plant will be tested
under the fault tolerant scheme. The relevant parameters
of the system will be determined and then an example of
functioning will be presented.

A. System identification

The goal is for a linear cursor to follow a given electrical
reference signal. The cursor is attached to a belt moved by
a continuous current engine through a pulley and a reducer.
The pulley transforms the rotation into a linear movement of
the electrical engine and the reducer facilitates the obtaining
of a better precision of the cursor position through a reduced
inertia of the motor axis.

The practical assembly has two sensors. A position sensor
which measures the linear position of the cursor and a

tachometric generator which gives a proportional tension
with the rotation speed of the motor.

The above elements are presented in Figure 1 where the
plant with the sensors is presented in open-loop. The offset
value is added to counter the influences of the operational
amplifiers used in the scheme.
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Fig. 4: Plant with position and tachometric sensors

In the following a short technical description of the scheme
components is given.

1) Sensors: The position sensor translates a movement
ranging from {−7.7cm . . . 7.7cm} into a tension variation
of −15V . . . 15V . Thus the transfer function will be in fact
a gain with the transfer coefficient β = 1.93 V

cm .
The tachometric generator linked to the engine and will

provide a tension proportional with the rotational velocity of
the engine. In both cases the sensors are considered to be
simple gains that transform their specific physical entry into
a tension output.

2) Power amplifier and engine: The power amplifier has
an unitary gain in tension. Its role is to give the necessary
current intensity, necessary to the input of the engine. Several
parameters define the engine, we mention Φ0, the flux con-
stant considered for equal couple, R, L and J the resistance,
inductance and inertial characteristic. Finally, a mechanical
viscosity coefficient α is considered.

The transfer function is defined as the rapport between the
output angular position θm and the input electrical tension
um. The additional signals of induced current i, λ, the
mechanical couple and Ω, the angular velocity will be also
used to obtain the transfer function.

The relevant equations are detailed below:

um(t) = Ri(t) + L
di(t)
dt

+ Φ0Ω(t)

λ(t) = J
dΩ(t)
dt

+ αΩ(t)

λ(t) = Φ0i(t) (18)

Applying the Laplace transformation the transfer function:

Ω(s)
Um(s)

=
Φ0/

(
αR+ Φ2

0

)
LJ

(αR+Φ2
0)
s2 + R(J+αL/R)

(αR+Φ2
0)

s+ 1
(19)

We make the notations Kv = Φ0

(αR+Φ2
0)

and τ = RJ

(αR+Φ2
0)

and in collaboration with θ(s) = Ω(s)/s and assuming
L/R ≈ 0 the engine transfer function is written as:

θ(s)
Um(s)

=
Kv

s(1 + τs)
(20)
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Fig. 3: Example of functioning

The reducer has an exchange rate of 1/N = 1/7 and
an inertia equal with Jc

N2 which is negligible for the given
numeric values. The pulley transforms the rotation θs into
an linear deplacement x(t). The transfer function is then a
gain proportional with the wheel radius δx

δθs
= ρ with the

numerical value of ρ = 2.16 cmrad .
Practically, the system parameters are determined through

a least square methodology. The response obtained by excit-
ing the system on a spectrum of frequencies between 3 and
30 Hz is analyzed for its amplitude and phase components
in order to obtain the parameters Kv and τ .

The numerical values of the parameters are Kv = 3.5 and
τ = 0.019 and the command law in the form u = Kx with
K =

[
1.18 7 · 10−3

]
is employed such that the system is

stabilised with poles
[
0.5 0.9

]
.

In order to use the fault tolerance scheme some additional
information is required. Firstly, bounds for all the noises
affecting the system must be determined. We will consider
the noise affecting the plant w and the sensors in both healthy
and faulty mode of functioning ηi and ηFi , respectively. It
must be stated that the noises analysed have a gaussian
distribution and therefore they can have arbitrarily high
values. However, from a practical point of view we chose a
set of bounds such that the probability of an actual passage
is considered negligible. The numerical values obtained are
w̄ = 0.2, η1 = 0.1, ηF1 = 0.3 and η2 = 0.5, ηF2 = 1.

The command input as well as the output received are
hardware limited. The values, expressed in voltages must be
restricted to the sets

U = {u : −10V ≤ u ≤ 10V } (21)
Y = {y : −9.85V ≤ y ≤ 9.85V } (22)

for the input command and respectively for the output (this
value was obtained by measuring the voltage output for a
maximal elongation of the cursor in both directions). These
limitations in turn impose limits on the possible values of the
reference signal xref that can be used. In order to respect
these limitations the minimal output set O∞ will be defined
[9]:

O∞(k) = {xref (k) : u(k + t) ∈ U , y(k + t) ∈ Y, t ≥ 0}
(23)

Finally, each pair (A,Ci) must be observable, a condition
which is not true in the case of the tachometric generator.

In consequence, a composite sensor, considered as a sum of
the both real sensors will be used. The outputs will in then
be determined by C1 =

[
1 0

]
and C2 =

[
1 0.026

]
.

B. Results

For the above system a hybrid structure was employed
in the sense that, the command structure was software
implemented and the positioning system was hardware. The
two parts were interconnected through a acquisition board.

In Figure 3 an simple example is presented. One can see
that, even if, at moment t = 6s a sensor becomes faulty the
plant state suffers no visible degradation (the reference is
still followed) thanks to the FDI mechanism.

VI. CONCLUSIONS

This paper provides an effective method of fault tolerant
control of a multisensor scheme. A robust FDI mechanism
that implements a set membership approach is presented.
Offline computations of invariant sets are performed and,
only set membership tests are performed at run time. A
detailed example of a positioning system is analysed.
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