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Invariant sets method for state-feedback control design

Anamaria Luca, Pedro Rodriguez-Ayerbe and Didier Dumur

Abstract— This paper presents a invariant sets approach for region of attractiorit C R", and also that all state trajectories
the state-feedback control design. Considering a linear discrete gre bounded for all bounded disturbance sequences. Further

time-varying system with polytopic uncertainty, affected by more every trajectorgd(x,k,v(-)) — 0 if v(k) — 0 ask —
state disturbances and input/output constraints, the proposed V7 !
o wherev(-) represents the noise [2].

methodology gives the best control law in terms of finding ] i .
the maximal invariant ellipsoid where stability and constraints In the past years, set invariance theory was intensely
satisfaction are assured. In the second part of the paper a studied given the benefits that it has to offer. A broad lextur

robust performance criterion is considered, in order to ajust ghout this family of sets is well outlined in [1]. Once the

the robustness and the performance. His effects on the invaridn invariance theory developed, methods for obtaining irari

maximal ellipsoid and the obtained performance are discussed. : . . .
sets were searched. In [3], [4] are considered invariant

Key—WordsConstraints, Ellipsoids, Invariants sets, Lineac€llipsoidal sets that are determined using LMI techniques.

Matrix Inequalities, Lyapunov functions, S—procedure. The paper is organized as follows. The class of systems
that is to be considered is presented in Section 2 along
. INTRODUCTION with some basic informations about LMIs. In Section 3 the

. . L main results are presented consisting in finding a maximal
In classical robust design, a controller satisfying rObu%variant ellipsoid and the corresponding state-feedtawak

stab|I_|ty and performﬁncel IS §ea|rchehd _for a (cj:on&dzred YK order to state the results a numerical example is predente
certain systgm. Usually, classica teq niques do not densi ;, gection 4. In Section 5 some concluding remarks are
the constraints of the system, but in recent years, seveigl,

control techniques using invariant sets have been studied |
order to accomplish that. This paper proposes a method for
state feedback design using invariant sets techniques. The II. PRELIMINARIES
objective is to synthesize a feedback gain that guarantees System model
the robust stability and some performance in the biggest
region of the space satisfying the constraints. Are coneitle ~ Consider the following discrete linear time-varying (LTV)
constraints on the input, as for example the ones given Igystem:
the saturation of the actuators, and on tr_]e output, as for x(k+1) = AKX(K) +B(K)u(k) + Bow(k)
example for guaranteeing the current level in a self, in orde yk) = Cx(K) Q)
to not saturate the magnetic core, or on the output level in [A(k) B(k)] e Q
a hydraulic system.

A positively invariantset can be on short defined like awhere x € R™ is the stateu € R™ the input,y € RP the
subset of the space state with the property that, if it castai OUtput, w € R the state noise an@ is a polytope
the system state at some time, then it will contain it also
in theyfuture. This means that once the state is in the set it Q =Cof[A1 Ba], [Ao Bol,..., [AL B}, (2)
will never exit. A set is said to bevariant if the inclusion with Co devoting to the convex hull. This means that if
of the state at some times implies the inclusion in both the L

The notations are standard.

future and the past [1]. In the presence of disturbances, [ff Bl € Q then for some\i > 0, Z)‘i =1 we have[A B =
the (ijnvariance is preserved, the termrobust invariances ZiL:Mi[Ai Bi], where A, Bi, i =|:1...L are vertices of the
used.

X ) ) ) ) ] _uncertain polytop&€. L = 1 corresponds to the nominal LTI
Since the existence of an invariant set is equivalent W'thinear time invariant) system description.

the existence of a Lyapunov function, the invariant sett€0 "~ the control law has the form:

provides a suitable theoretical framework to deal with istab

ity problem. In the presence of disturbances or uncertsnti u(k) = Fx(k) 3)
the notion of input-to-state stability (ISS) is used sinse i e , , ,

not possible to guarantee that the origin is asymptoticall"€reF € R I 1S ablﬂxed feedback gain matrix such that
stable. ISS implies that the origin is an asymptoticallpga /1 BF IS strictly stable.

point for the nominal system(k+ 1) = f(x(k),v=0) with g System constraints

A. Luca, P. Rodriguez-Ayerbe and D. Dumur are with the Corbepart-  We consider Euclidean norm bounds on the control input:
ment of SUPELEC, 91190 Gif sur Yvette, Frand@namari a. | uca,
pedro. rodriguez, didier.dunmr}@upelec.fr [| ul]2< Umax 4)
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Similarly, for the output, we consider the Euclidean norm{5) and noise presenc@ (6) is performed by solving the

constraint: SDP (semi-definite programming):
<
1Y 1|2 Ymax ®) max log detG (8)
Also, the disturbance vectap is bounded: &Y
- subject to:
wo<l T yTRT
G 0 aG GA +Y'B
Remark 1:Constraints on the input are considered hard 0 al 0 B, <0 9
constraints since they are usually limitations on process aG 0 aG 0 - ©)
equipment. Qutput constraints are typically called soft-co AG+BY B, O G
strains since they are often performance goals and so they G Y
can be softened. =0 10
HrE (0
C. Linear matrix inequalities and
Ofﬁhgnfi?rrnmatrix inequality or LMI is a matrix inequality [ G (AG+BY)TCT } -
C(AG+ByY) y2,l —CB,BICT| ~ 11
wherexy, Xz, ..., X, are the variabless = Rl e R™Mare given,  The stabilizing feedback gain that maximizes the invariant
andF(x) = 0 means thaF (x) is positive-definite [5]. ellipsoid isF =YG L.
Sc;hur complements states that faRex) = Q(x)", R(x) = Proof. Let the Lyapunov functio’/ = x"Px, P=PT =
R(x)" andS(x) depend affinely orx, the LMI G 1~ 0. Invariance implies thatAV =V (k) -V (k+1) > 0.
Q) S(x) This leads to:
T -0 T T
Sx)" R(X) m {P—(Ai—i—BiF) P(A +BiF) * ] m -0
TDA LR T z
is equivalent to the matrix inequalities w —BoP(A +BiF) —BuPBuw] |w (12)
R(X) = 0,Q(x) — S(X)R(X) 15(x)T =0 wherex represents the transpose element.
_ Also x"Px>1 andw"w < 1 can be written like:
or, equivalently, T
T 1 X P 0]|x -0 13
Q(x) - 0,R(x) —S(x) " Q(x)""S(x) > 0 [5]. ol 1o —1lewl 2 (13)
[ll. MAIN RESULTS From S-procedure we have that (13) implies (12) if exist
Over the years several families of invariant sets have begh> 0 such that:
considered in literature, a very popular class of invarsais P— (A +BiF)TP(A+BF) « P 0
is that of ellipsoidal sets or ellipsoids. An ellipsoidat san { —BLP(A +BiF) _BTPB, Zalg J
be defined as follows: ) ) )
- This can be written like:
E={x|x' G x<1} (7) P o] p 017 TaP-1 o0
whereG 1 = P ¢ R(Mx(™) js a symmetric positive-definite 0 al P(Ai +BiF) PBy 0o P!
matrix. One of the reasons for choosing ellipsoidal invaria _ P “0
sets is their connection with powerful tools such as Lyapuno P(Al+BiF) PBy| =~

function or LMI techniques, another reason for choosing By applying Schur complements and considering> 0

ellipsoids despite polytopic invariant sets is given by hich is the case for the considered system) one obtains:
that the last ones do not lend themselves to analysis.

The aim of this paper is to find the maximal invariant P 0 P (A+BF)'P
set and the stabilizing control law that provides this set fo 0 al 0 Bi,P -0  (14)
a polytopic system, affected by disturbances and input and P 0 2P 0 -
output constraints. Before enunciating the theorem thesgi P(A+BF) PB, O P

the maximal ellipsoid and the stabilizing state-feedb@sk | By pre- and post-multiplying this inequality with
some notions about S-procedure have to be given sincediagG,1,aG,G) and making the substitutiony = FG
has a major importance in obtaining the results. the LMI (9) yields.

S-procedure Let Fo = Fj, Fu = F € R™. For all z  For proving the LMI corresponding to input constraints
satisfyingz' F1z > 0 implies z' Fpz > 0 if exists ana € R, e have:
i %h%(\;\:grr]nl?%gn':slid[g]r.discrete linear time-varying system I H% = [[Fx H% =]l Fp /2 H%H P1/2x H%:

. ' ) : > = Amax(FPIFT)(XTPX) < Amax(FP1FT)

(1) with the control law given by (3). The offline maximiza- ma
tion of E subject to input constraint (4), output constraintsvhere Anayx is the maximal eigenvalue.
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Now, using Schur we have th#tu ||2< Umax if: The stabilizing feedback gain that maximizes the invariant
p T ellipsoid isF =YG L.
{ } =0 Proof. Considering (13) and S-procedure, equation (15) is

F U : e
equivalent with:

Pre- and post-multiplying this inequality with digg, 1) and T
using again Schur gives LMI (10). P- %/(QJFFTRF) 0} _ [ P 0 ] .
Now for the output constraints one gets: . 0 al P(Ai+BiF) PBy

aP~ 0 P 0
lyll3 = [IC(A+BiF)x(k)+CByw(k) |3 < 1o pl} |:P(Aj+BiF) PB(J = 0.
< [|C(A+BiF)x(K) |5 + || CBow(k) |3<
< AmaiC(Ai +BiF)P~ YA +BiF)TCT](x"Px)+  For a >0, by applying Schur complements one gets:
a P 0 P (A+BF)'P
+  AmaX{C(A +BiF)P (A +BiF)TCT] 0 al o ( BIJ'P)
With Schur theorem we obtain: P 0o 1ip 0 B
p (A +BiF)TCT P(Ai+BiF) PB, O P
2 T~7|2=0 1 cTRi
C(A +BiF) Yqal —CBwB,C Qz FTR:z Lo .
By congruence with diag, 1), LMI (11) yields. For 8 8 l%) 1|] le 0 0 0] =0
completing the proof we must say that the feedb&cks 0 0 yJ[RF 0 0 0

obtained byF =YG L. ®
Remark 2:S-procedure introduces a new variaoleThe By applying again  Schur complement, pre-and

presence obr render the inequality (9) BMI (bilinear matrix post-multiplying  the  resulting  inequality — with

inequality). Because is a scalar, amoptim can be found by diagG,l,aG,G,l,l) and making the substitutio = FG,

executing a simple loop. Another simple way is to use themM| (16) yields. &

PENBMI solver [7] (or other solvers) in MatLab environment  As expected, the robust performance criterion is a com-

which proved to work successfully. promise between the maximal ellipsoid volume and the
Remark 3:Due to the fact that the ellipsoid volume is system reaction speed. By imposing this criterion, thedstrg

inversely proportional with the eigenvalues product (tee d invariant ellipsoid will lose in volume but the system will

terminant), finding the maximal ellipsoid is done by solvinggain in speed response.

the problemmax detfG). For rendering the problem convex,

the “logarithm” operator is used. Because the MatLab tools IV. NUMERICAL EXEMPLE

we use are b_uild to fir_1d the minimum of a convex problem, cgnsider the polytopic system (given in [5]) affected by
our optimization criteria becomesin —log det(G) [8]. disturbances and with input and output constraints. The

The previous theorem gives the necessary and sufficieffsiem is in form (1)Q being defined by (2) with:
conditions for obtaining stability. In order to achieve usb
0.0591 02641}

performance we impose a upper bound\tothat guarantees o _ [0-9347 05194} Ao — {
a certain decreasing for the Lyapunov function: 0.3835 0831Q" 17971 08717)"

—1.4462 0.01
B= [_007012] ,C=[1 0] andBy = [0.01] .

1
V(k+1)-V(k) < —;/(X(k)TQX(k) +u(kTRuk))  (15)
Theorem 2:Consider discrete linear time-varying system Ve impose the control constraifjtu |[2< Umax= 1V and
(1) with the control law given by (3). The offline maximiza- the output constrainft y |[2< ymax= 1V. _
tion of E subject to noise presenee (6), input constraint  BY a@pplying theorem 1, the optimurx for which we
(4), output constraints (5) and robust performance coinssra have the largest ellipsoidal invariant setagp = 0.00656.

(15) is performed by solving the SDP (semi-definite profor this a the maximal ellipsoid has the voluménax =
gramming): 429184 and the control law that gives this volume is:

F=1[0.3269 02514.

In Fig. 1 we have the representation of the maximal
subject to: (10), (11) and invariant ellipsoid. The diagonal band represents theestat
- space where the constraints are satisfied. It can be seen

r‘g?(x log detG (16)

G 0 aG GA +Y'Bl GQi YR that the ellipsoid is inside this area, assuring the coimtra
0 al 0 BG, 0 0 satisfaction. For proving invariance we considered some
aG 0 aG 0 0 0 1., different initial points for the state and plotted their-tra
AiG‘lFBiY Bo O G 0 0|~ jectories. In the complementary figure the ISS property is
Qz2G 0 0 0 i 0 pointed out: noise presence and uncertainty do not allow the
RZY 0 0 0 0 vl state to asymptotically converge to O but instead, the state

(17) converge to an attraction region who in fact is the minimal
i=12,...L invariant ellipsoid (the smallest ellipsoid where invagda
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Space aréa whére constrains
* are statisfied :

State samples

Makimal.éllipsaid

X2
(=)

003 002 00 0 00l 002 003 004 005
1

Fig. 1. Maximal invariant ellipsoidal set.

and constraints are satisfied under noise and uncertainty

presence).

Considering now the robust performance criterion given

by (15) withy=30,Q = 1.5 andR =1, the ellipsoid drawn
in Fig. 2 yields.

Fig. 2. Maximal invariant ellipsoidal set satisfying robystrformance
conditions.

In this case we obtaimg, = 0.00281 and the maximal
volume Vinax = 21.1021. The control law that gives this
volume is:F = [0.3223 03335.

— Output without the performance criterion
= = =Output for y=30

L L L
20 30 40

Fig. 3. System output considering or not the robust perfooaamiterion.

The robust performance criterion reduced the invariarito]
ellipsoid size but improves the system comportment in terms

684

of response speed. In Fig. 3 we plotted the output for the
case with performance criterion (solid line) and without
the criterion (dashed line). It can be seen that the robust
performance criterion presence has increased the speled wit
which the output converges to the reference.

— Input without the performance criterion
| = = =Input for y=30

15 20 25 30 35 40 45 50

Fig. 4. System input considering or not the robust perforraariterion.

The same observation can be made for the input (Fig. 4):
the input trajectory in the presence of the robust perfomaan
criterion (the solid line) reaches the attraction areaefatstan
in the absence of the criterion (the dashed line).

For obtaining these results MatLab environment was used.
The optimization were solved using the software Yalmip [9]
with the Sedumi solver [10] in MatLab environment.

V. CONCLUSION

This paper presents a simple and clear approach for deter-
mining the largest invariant ellipsoid and the state-femttb
gain that assures the maximality of the invariant set. The
maximal ellipsoid provides the biggest x-subspace region
where, for a uncertain system affected by bounded distur-
bances and constraints, we can assure invariance, constrai
satisfaction and obviously ISS. In order to accomplish sbbu
performance, an upper bound is imposed to the Lyapunov
function. This upper limit has as result a compromise be-
tween the maximal invariant set volume and the convergence
speed of the considered system. The problems presented
here are solved efficiently by LMI solvers with a reduced
computational burden.
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