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Abstract — For public safety reasons is essential early pre-

diction of natural disasters like floods and landslides, which 

can be based on soil moisture estimation. Our goal is to 

evaluate quality of the Dubois and Shi empirical models used 

in soil moisture parameters retrieved from TerraSAR-X 

satellite data. In order to compare and validate estimated 

results, volumetric soil moisture measurements were done 

with a Pico64 sensor at the time of SAR image capture. Our 

measurements show superiority of the Shi model by a factor 

4 with regard to the Dubois model. Results are further im-

proved using Self-organizing map, which is a type of a neural 

network in order to file out artefacts and fields with inaccu-

rate soil moisture estimation. 

 

Keywords — TerraSAR-X, soil moisture estimation, em-

pirical model, self-organizing maps, MBD, GMRF, CUDA 

I. INTRODUCTION 

ANY studies have shown, that microwave radiation 

data depends on many natural surface parameters, 

such as dielectric constant [1] and surface roughness. Di-

electric constant highly depends on soil moisture. Because 

of a huge difference in the relative dielectric constant for 

dry bare soil (typical value is around 2-3) and pure water 

(typical value is about 80) [2], there is a chance of mois-

ture estimation through remote sensing. But there are a lot 

of factors that affect dielectric parameters retrieval, such 

as molecular orientation, soil type and aggregation. Soil 

moisture estimation from the remote sensing techniques 

has been very popular in the past few years, mainly be-

cause of a unique range resolution and the ability of global 

coverage. 

For the purpose of soil moisture estimation two empiri-

cal models for dielectric parameters retrieval were used. 

Those models were Dubois [3] and Shi [4], which are 

based on theoretical models, mainly on the integral equa-

tion model (IEM) [5]. Those models are extended and 

modified to obtain more accurate estimated data on spe-

cific terrains compared to field sensor measurements. 

This paper is organized in sections. In the section II  

two empirical models for obtaining dielectric parameters 

are presented. Section III gives a fundamental description 

 
M. K. Author, Faculty of Electrical Engineering - University of Mari-

bor, Slovenia (e-mail: matej.kseneman@gmail.com). 
D. G. Author, Faculty of Electrical Engineering - University of Mari-

bor, Slovenia (e-mail: dusan.gleich@uni-mb.si). 

J. M. Author, Faculty of Electrical Engineering - University of Mari-
bor, Slovenia (e-mail: mohorko@uni-mb.si). 

Ž. Č. Author, Faculty of Electrical Engineering - University of Mari-

bor, Slovenia (e-mail: zarko.cucej@uni-mb.si). 

regarding SOM neural networks used to filter results from 

soil moisture estimation. Section IV concludes our pro-

posed algorithm for soil moisture parameters retrieval. In 

the section V an experimental results are shown followed 

by a brief discussion. 

II. EMPIRICAL MODELS 

Earth’s natural surfaces are considered to be rough. Sur-

face roughness has an effect on radar backscattering, while 

incidence angle has a key role in a radar reflection.  

A. Dubois empirical model and it’s inverse algorithm 

Dubois empirical algorithm [3] is a simplification of the 

original Oh empirical model [6]. Soil moisture and surface 

roughness can be estimated from two different polariza-

tions (horizontal and vertical) of a reflected radar beam. 

This empirical model is constructed from the 

POLARSCAT [7] data and only describes co-polarized 

backscattering as a function of surface roughness, inci-

dence angle and frequency. However, the dielectric con-

stant depends on soil volumetric moisture and backscat-

tering coefficients, which are empirically derived as is 

written by Eq. (1-2) [3] 
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where θ is local incidence angle, ε is a real part of complex 

dielectric constant, h is RMS height, k is wave number and 

λ is wavelength in cm. Those two relations are valid in the 

frequency range of 1.5–11 GHz; with incidence angle 

between 30 and 65° (typical frequency for a German Earth 

observation satellite TerraSAR-X [8] that uses an X-band 

SAR is 9.65 GHz). 

The reason why this model uses two co-polarized chan-

nels is because such solution, as opposed to fully-polarized 

channels, is less sensitive to system noise and crosstalk. 

Also their calibration is easier to perform. However, we 

are interested in resolving equations for unknown dielec-

tric constant and surface roughness parameters for a given 

TerraSAR-X radar backscatter product file, where a little 

modification [8] is used (conversion from β
0
 to σ

0
). In-

verse algorithm is described by equations (3-8). 
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This model is robust also in vegetated areas, but with 

limitation that the ratio σ
0
hh/σ

0
vv has to be less than -11dB.  

B. Shi empirical model and it’s inverse algorithm 

The foundation of Shi model [4] represents the IEM 

model [5], which includes the effect of surface power 

spectrum. IEM works well with parameter estimation of 

σ
0

hh and σ
0

vv for AIRSAR and SIR-C measurements, 

which operate in the L-band. However, for other SAR data 

this model remains quite complex. 

In literature [5] has been shown, that the IEM can be 

represented as two functions dependent only on εs, θ and 

ks. These functions can be written as: 
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Shi combined this with a numerical regression equation 

derived from a simulated data. The inverse equation for 

soil moisture estimation is given by: 
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III. SELF-ORGANIZING MAPS 

For further improvement of results self-organizing maps 

(SOM) were used to fill out artefacts and fields with inac-

curate soil moisture estimation. The SOM is a type of 

artificial neural network, trained using unsupervised learn-

ing to produce a low-dimensional (typically two-

dimensional), discrete representation of the input space of 

the training samples, called a map. The self-organizing 

maps are different than other artificial neural networks in 

the sense that they use a neighbourhood function to pre-

serve topological properties of the input space [9].  

The SOM consists of components called nodes or neu-

rons. Each node is associated with a weight vector of the 

same dimension as the input data vectors and a position in 

the map space. The usual arrangement of nodes is a regu-

lar spacing in a hexagonal or rectangular grid. The SOM 

describes a mapping from a higher dimensional input 

space to a lower dimensional map space. The undergoing 

procedure for a given input sample vector is to find a node, 

which has a weight vector closest to an input vector. This 

node is called a winning neuron. Neurons are arranged in 

the grid topology and for every input vector a winning 

neuron is selected. Input weight is then updated for win-

ning neuron and its closest neighbouring nodes. For updat-

ing nearest neuron neighbours a Kohonen’s rule [9] is 

used, which is given by (14)-(15). By this rule for every 

neuron i a certain neighbourhood is updated, and by 

changing parameter α, a distance of affected neighbour-

hood can be changed.  
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IV. ALGORITHM CONSTRUCTION 

The proposed algorithm is composed of many partial 

steps, which includes:  

1. Sub-sampling of TerraSAR-X image by factor 2. 

This step has to be done, because raw image with 

speckle noise greatly affects the performance of 

soil moisture estimation. 

2. Speckle noise removal with Model-Based De-

speckling (MBD) algorithm [10]. 

3. Data conversion to from β
0
 to σ

0
 

4. Conversion to soil volumetric moisture using se-

lected empirical model. 

5. Removing artefacts using SOM classification. 

A. Speckle noise removal 

Radar beams can interact with each other constructively 

or destructively, which causes bright or dark pixels named 

speckle noise. Speckle noise is well known phenomenon 

in radar remote sensing systems, even though it can appear 

at any type of coherent radiation. 

Bayes approach to speckle noise removal from synthetic 

aperture radar (SAR) is used for image quality enhance-

ment and various techniques for information extraction. A 

first order Bayes inference is used for maximum a poste-

rior (MAP) estimation. Prior in Bayes formula is modelled 

with Gauss-Markov random fields (GMRF). To find the 

best model parameters a second order Bayes inference is 

used. This method is proven to be good at speckle noise 

removal and texture estimation [10]. Bayes inference is 

given by 
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where y is image with a speckle noise, x is a noise-free 

image, θ are model parameters, p(y|x,θ) represents likeli-

hood, p(x|θ) is prior and p(y|θ) is evidence. Because evi-

dence does not play any role in maximization process over 

x, it can be neglected from further model derivation. 
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Speckle noise in the original SAR image is modelled as 

multiplicative noise y = xn, where n represents noise. 

Probability density function (pdf) of likelihood is mod-

elled by gamma distribution. 
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where L is equivalent number of looks, s is current pixel 

location and Γ is gamma function.  

GMRF belong to a Gibbs family of models, which are 

suitable for describing SAR images. GMRF are given by 
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where NS is pixel neighbourhood, r defines neighbouring 

pixels and θr are texture parameters. Solution of first de-

rivative is given by Eq. 18 and Eq. 20, where we used 

Hessian approximation in logarithmic space to derive Eq. 

21 and 22. 
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This algorithm is very complex, so an implementation 

was made using CUDA technology [11] on graphic card’s 

GPU, where a speed-up up to 30x was achieved. 

V. EXPERIMENTAL RESULTS 

For testing purposes a TerraSAR-X SAR image of hy-

dro plant region Zlatoličje near Maribor was used as 

shown on Fig. 1. The image was taken on 6.6.2009 with 

49° inclination angle and in dual polarization mode, with 

ground range 1.56 m and azimuth range 2.2 m.  

 

 
Fig. 1. Quick-look image of the testing area. 

 

Parameters for MBD algorithm were: larger window 

with a size of 13x13, within this window a smaller win-

dow moves with the size of a single pixel (because of 

multithreading on GPUs). Model order was set to 2. Fig. 2 

shows the sample image and an output of this algorithm. 

 

  
Fig. 2. Result of the MBD de-speckling algorithm. 

 

The next step was to assess, which of the two dielectric 

parameter empirical models performs best on a given 

TerraSAR-X data in whole soil moisture estimation algo-

rithm described in section IV. For inversion process of 

empirical models, a series of equations were used; for 

Dubois model Eq. (3-7) and for Shi model Eq. (9-13), 

were used. Results of this assessment are presents on Fig. 

3, where can be clearly seen, that Shi model outperforms 

Dubois model. This fact also proves Table 1, where com-

parison between estimated and measured values with their 

deviations is given. 

 
TABLE 1: COMPARISON BETWEEN DIFFERENT VALUES. 

 Field Dubois Shi ΔxD ΔxS 

1. 0.26 0.1904 0.2511 26.7 3.4 

2. 0.34 0.2422 0.2901 28.7 14.6 

3. 0.33 0.1864 0.3220 43.5 2.4 

4. 0.33 0.2396 0.3285 27.3 0.4 

5. 0.29 0.2311 0.2875 20.3 0.8 

6. 0.30 0.2823 0.2804 5.9 6.5 

7. 0.26 0.3687 0.2749 41.8 5.7 

 

From a volumetric soil moisture point of view the over-

all values lie in the interval 10-40%. Given results are 

better with the Shi model and maximal deviation is almost 

4 times smaller than in the case of the Dubois model. Shi 

model also has better data fitting in the bare soil areas or 

even over the small vegetated areas. 

 

  

  
Fig. 3. Volumetric moisture estimations based on em-

pirical models; Dubois (left) and Shi (right), Gray level 

images (up) artificial coloured images (down). 

 

 The last step is to apply SOM in order to remove any 

disturbances, which are present in various topological 

forms, such as roads, woods, settlements and volumetric 

scattering. Therefore a SOM was constructed with an input 

feature vector consisting of gray-scale value, mean and 

standard deviation value of 5x5 neighbouring pixels, Sobel 

edge detector of the same neighbouring size and certain 

masks, which determine the four most important directions 

(horizontal, vertical and two diagonals). These masks are 

represented as zeros on the main direction, values 1 over 
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the main direction and -1 elsewhere. 

Learning samples were manually selected from three 

independent images, for instance 30 right and 30 false 

samples. There are used two SOMs consisting of 20x20 

neurons in grid topology, one for right and one for false 

classified samples. The algorithm is designed in a way, 

that the user can select a number of k-fold neighbours and 

by selecting this option it greatly affects the produced 

results. Output sample is marked as positive or with num-

ber 1 in cases, where the smallest Euclidian distance oc-

curs between input vector and positive SOM input weights 

and vice versa. Each of these SOMs is therefore learned 

with 90x8 input matrixes and with 5000 epochs. Fig. 4 

shows an example of the input samples selection and cor-

responding edge detection image obtained by the Sobel 

edge operator. 

 

  
Fig. 4. Manual selection of the input samples (left), 

edge detection using Sobel operator (right) 

Fig. 5 shows SOM output, where the image on the left is 

a result of SOM with 20x20 neurons, meanwhile the image 

on the right is a result of SOM composed of 15x15 neu-

rons and 3-fold neighbouring neurons. The left image also 

contains information about the pixel location used as ele-

ment of feature vector, while the image on the right does 

not contain such information. We had shown that pixel 

location is irrelevant for feature detection algorithm.  

  
Fig. 5. SOM output; left 20x20, right 15x15 neurons. 

For method validation we used energy of quantization 

noise, which is given by Eq. 23. Table 2 shows the results 

of SOMs with different number of neurons. 

TABLE 2: ENERGY OF QUANTIZED NOISE. 

SOM E [20x20] E [15x15] 

True 0.099253 0.051228 

False 0.094436 0.044901 
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From Table 2 follows that even though a smaller num-

ber of neurons is used, the output performance is nearly 

two times better when more neurons are captured.  

VI. CONCLUSION 

In this paper we have shown how to construct volumet-

ric soil moisture estimation algorithm using dual polariza-

tion TerraSAR-X data. By our opinion it is better to use 

Shi model than Dubois. It is true, that Shi model is more 

complex and takes more computational time, but on the 

other hand it gives better results. 

In order to enhance quality of results the SOMs were in-

troduced, which gave better results in the case if no infor-

mation regarding pixel position is used as element of fea-

ture vector. We have to emphasize that the overall accu-

racy of SOMs is quite good also in condition of very low 

percentage of learning set, which was only 30/512
2
 = 

0,1144 ‰ per image. We can conclude that the SOM us-

age has enhanced algorithm and almost completely re-

moved undesired artefacts such as roads, rivers and woods. 

Sobel edge detector is quite influential feature and is there-

fore seen in the resulting images. This effect can be sup-

pressed with post-processing step like Lee filter [12]. 

SOM algorithm has turned out to be robust and will 

achieve even better data fitting in case of appropriate fur-

ther input feature vector expansion.  

Black spots those are visible on Fig. 5 can be removed 

with simple filling algorithm. Further research will show if 

this additional step is needed.   

APPENDIX 

At this point the authors would like to thank Slovenian 

company Dravske elektrarne Maribor (DEM) for financing 

project regarding soil moisture estimation in surroundings 

of the river Drava. 
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