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Abstract — This paper considers the problem of 

reconstructing a bandlimited signal from a finite number of 
its non-uniformly distributed samples. We evaluate a new 
algorithm for this purpose and compare it to an existing 
algorithm. We analyze the advantages and disadvantages of 
both algorithms. Reconstruction efficiency and accuracy of 
approximation procedures differ depending of the number of 
missed samples in nonuniformly sampled signals. Moreover 
the number of iterations during reconstruction phases affects 
approximation error.    
 

Keywords — Approximation, nonuniform sampling, 
reconstruction.  
 

I. INTRODUCTION 
IGITAL signal processing samples continous-time 
signals in order to obtain discrete-time 

representations. Shannon’s sampling theorem for band-
limited signals states that the signal is uniquely determined 
by its values at an infinite set of sample points spaced 
½(fm)−1 seconds apart, where fm is the maximal frequency 
in the signal’s spectrum.  

In real-world measurement systems the data may suffer 
from several problems, including data dropouts, an 
irregularly spaced sampling grid and time delayed 
sampling, which produce a subset of non-uniformly 
distributed samples. 

It is therefore important to understand how to 
reconstruct signals from a smaller number of non-
uniformly distributed measurements than the number 
required by the Shannon’s sampling theorem. It requires  
developing new efficient reconstruction algorithms and 
implementing them numerically.  

In this paper we propose a basis fitting algorithm, based 
on multiresolution and wavelet coeficient estimation, as an 
extension of the Multiresolutional Basis Fitting 
Reconstruction (MBFR) method proposed in [1], and the 
Multiresolutionally-based Conjugate Gradients (MCG) 
algorithm developed in [2]. The principal difference is that 
the MCG algorithm applies L2 – norm approximation 
while we apply L1 – norm approximation as in [3]. 

Section II introduces the idea of the basis fitting method 
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and describes the improved algorithm for solving 
overdetermined systems of linear equations in the L1 norm. 
We show how to apply the algorithm on suitable chosen 
examples in section III.    

  

II. THEORETICAL BACKGROUND 

A. Discrete Wavelet Transform 

The DWT (Discrete Wavelet Transform) decomposes a 
signal into a set of orthogonal components describing the 
signal variation across scales [4]. In analogy with other 
function expansions, a function f may be written, for each 
discrete coordinate t, as sum of a wavelet expansion up to 
certain scale J plus a residual term, that is:  
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Equation (1) states that at any given position t, the value 
of f(t) is given by a sum over all dilations j = 1,... , J, and 
over all translations k = 1,... , 2−jM, of the wavelet function 
2−j/2ψ(2−jt−k) multiplied by its estimated coefficients djk 
plus a residual that corresponds to a coarse approximation 
of f(t) at resolution J. This term is given by the scaling 
function φJk(t) multiplied by its coefficients cJk.  

The estimation of djk and cJk is carried out through an 
iterative decomposition algorithm, which uses two 
complementary filters H0 (low-pass) and H1 (high-pass). 
Since the wavelet base is orthogonal, H0 satisfies the 
quadrature mirror filter conditions [4].  
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Fig. 1. Discrete wavelet transform tree. 

 
The algorithm starts by passing the data through both 

filters H0 and H1 (Fig. 1.), and then decimates their output 
by half. The high-pass filtered and decimated data are the 
wavelet coefficients djk for the finest resolution. The low-
pass filtered and decimated data are the coefficients cJk of 
the scaling function. By reapplying H0 and H1 to the 
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residuals cJk, one obtains the wavelet and scaling 
coefficients for the coarser resolution, and so on. 

The inverse transform can be obtained simply by 
reversing the previous sequence and by use of synthesis 
filters F0 and F1, which are the reflection of H0 and H1. 
The inverse DWT is illustrated in Fig. 2.  
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Fig. 2. Inverse wavelet transform tree. 
 

B. Description of the problem 

Suppose we want N uniformly distributed samples of a 
discrete signal [ ]T

Nxxx 110 ,,, −= Kx , but we have only 
a subset of non-uniformly spaced samples 

[ ]T
Pyyy 110 ,,, −= Ky , where P ≤ N. Our goal is to 

obtain signal [ ]T
Nxxx 110 ',,','' −= Kx , which is the 

best approximation of original uniformly sampled signal x. 
We assume that the non-uniformly sampled signal is 

under-sampled with respect to the Nyquist frequency of 
the complete uniformly sampled signal.  

Suppose that the non-uniformly sampled signal y has 
been obtained through sub-sampling of the signal x, as 
expressed by the following equation:  

 
    xHy s=   (2) 
 
where Hs is a sub-sampling matrix, with entries 0 and 1.  

In the reconstruction procedure, we can start from any 
resolution level J, but without loss of generality we 
explain the procedure using the synthesis bank depicted on 
Fig. 2. Since we do not have all of the samples on the 
desired grid, we cannot compute the wavelet coefficients 
of the signal at the highest resolution level. We can 
however, approximate the signal by its low frequency 
components, temporarily ignoring the high-frequency 
terms. These assumptions produce the predetermined 
linear system:  

 
 ( ) ( ) ycFFH =↑↑ 200 22s  (3) 

We are looking for a best approximation to this system. 
The scaling function coefficients, represented by vector c2, 
are estimated by applying an algorithm for solution of 
overdetermined linear system in the L1 norm [3]. The 
estimates c'2 yield a low frequency estimate x' denoted by 
x'a:  

 ( ) ( ) 200 '22' cFFx ↑↑=a  (4) 

In the next step, we calculate the error signal at each 
available sample: 

 as xHye −=2      (5) 

Similarly as above, we can estimate the detail 
coefficients of the second level decomposition by solving 
the predetermined linear system: 

 ( ) ( ) 2210 22 edFFH =↑↑s  (6) 

From available estimates, d'2, we can calculate the 
difference signal at the finer level: 

 

 ( ) ( ) 21021 '22'' dFFHee ↑↑−= s  (7) 

and the following system is generated:  

                      ( ) 111 2 edFH =↑s                               (8) 

By solving this predetermined system we estimate the 
detail coefficients d'1. At the end, the reconstructed signal 
can be calculated using the following expression: 

( ) ( ) ( ) ( )
( ) 11
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Since the matrices that appear in (9), (12) and (14) 
contain a significant number of zero-valued elements, by 
applying sparse matrix techniques, the computational time 
and the number of floating point operations are reduced 
significantly. 

C. Algorithm for Discrete L1 Linear Approximation 

The general L1 -  norm linear approximation problem 
can be described as follows. Let ( )xf  be a given real-
valued function defined on a discrete subset: 

{ }mxxxX ,,, 21 K=  of euclidian space NE . Given 

( )mn ≤  real-valued functions ( )xjϕ  defined on X , 

we form a linear approximation function   

     ( ) ( )∑
=
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1
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for any set { }naaaA ,,, 21 KK=  of real numbers. 
The L1 – norm approximation problem is to determine a 
best approximation ( )xAL ,*  which minimazes 

( ) ( )∑
=

−
m

i
ii xALxf

1
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For the L1 – norm approximation problem let us write      

( ) ( )iiijji xffx =≡ ,ϕϕ                  (12) 

and define non negative variables jjii cbvu ,,,  by  

putting 
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And jjj cba −=  for .,,2,1 nj K=  Then a best L1 

approximation coresponds to an optimal solution to the 
linear programming problem: 
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The dual of (14) is stated most conviniently as the 
bounded-variable linear programming problem:  
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III. EXPERIMENTAL RESULTS 
This section contains experimental results obtained with 

the proposed L1 - norm approximation algorithm using a 
second level wavelet decomposition tree. We compare this 
to results obtained by the MCG algorithm, which use L2 - 
norm approximation. Experiments are performed on non-
uniformly sampled signals with a different number of 
missed samples. All simulations are carried out under the 
same condition for both algorithms and the results are 
presented in graphical and numerical form. 

The next figure shows the signal which is non-
uniformly sampled with 45% missed samples.  
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Fig. 3. Original signal (solid line) and non-uniformly 
sampled subset (*). 

 Reconstruction procedure uses a two-stage filter bank 
as depicted in Fig. 2. Approximation algorithm is carried 
out in three phases. After first level a scaling function 

coefficients are estimated.  Second and third phase of 
approximation procedure make correction by adding 
details coefficients of the wavelet transform. 
 Fig. 4. shows the estimations of approximation and 
details coefficients of the wavelet transform.   
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Fig. 4. Estimated scaling function and wavelets 
coefficients during signal reconstruction procedure with 

db2 basis and applying L1 approximation. 

 Approximation function convergence during three-stage 
refinements procedure is presented at Fig. 5. 
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Fig. 5. Signal reconstruction phases. 

 The next two figures present results of reconstruction 
with two different approximation norm criteria. 
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Fig. 6. Reconstructed signal using db2 basis applying L1 
approximation. 
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Fig. 7. Reconstructed signal using db2 basis applying 

MCG, L2 approximation 

TABLE 1. NUMERICAL RESULTS OBTAINED IN THE 
SIMULATION PROCESS FOR DIFFERENT RECONSTRUCTION 

ALGORITHMS 

Algorithm Elapsed time ||x−x1|| 

L1, db2 0,297 sec. 0,5242 

MCG 
Db2, 2 level 0,296 sec. 1,3312 

Fig. 6. shows an original uniformly sampled signal of 
length 128 and its non-uniformly distributed subset that 
comprises 70% of the signal. The next two figures show 
reconstructed signals obtained by the L1 approximation 
and MCG algorithm respectively.  
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Fig. 8. Original signal (solid line) and non-uniformly 

sampled subset (*). 
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Fig. 9. Reconstructed signal using L1 - norm algorithm 

(solid line) and original uniformly sampled signal (dots). 
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Fig. 10. Reconstructed signal using MCG (solid 

line) and original uniformly sampled signal (dots). 

 
Numerical results are presented in Table 2. The table 

columns show the reconstruction method used, the elapsed 
time required for signal reconstruction and the square 
roots of the energies of the difference between the original 
and the reconstructed signal, respectively.   

 
TABLE 2. NUMERICAL RESULTS OBTAINED IN THE 

SIMULATION PROCESS FOR DIFFERENT RECONSTRUCTION 
ALGORITHMS 

Algorithm Elapsed time ||x−x1|| 

L1, db2 0,296 sec. 0,3274 

MCG 
Db2, 2 level 0,297 sec. 0,2489 

IV. CONCLUSION 
The algorithm proposed in this paper solves over-

determined systems of linear of equations arising from 
non-uniformly sampled signals using L1 – norm 
approximation. In contrast the MCG algorithm uses L2 – 
norm approximation.  

Our experiments indicate that L1 approximation works 
better than MCG when there is are more samples missing. 
The execution efficiency (elapsed time) does not differ 
significantly between the two methods.        
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