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Abstract — The present wireless communications must 

meet very strong conditions concerning the rate of data 
transmission, quality of service and electromagnetic 
compatibility. These requirements can be satisfy only by 
exploitation of families of complex radio signals, possessing 
special correlation properties. With regard, a method for 
synthesis of families of a class of ultra-wide band frequency 
hopping signals, called Costas arrays, is proposed in the 
paper. It is demonstrated that the method provides optimal 
correlation properties for all signals, belonging to a family of 
Costas arrays. The synthesized signals could be successfully 
applied in the wireless monitoring and control systems, ad 
hoc communication systems and so on. 

Keywords — Correlations, permutation matrices, signal 
synthesis. 

I. INTRODUCTION 
HE communication and computer systems are in an 
unprecedented progress today. Indeed communication 

and computer systems have formed a common space 
where the quantity and quality of the offered services are 
growing very fast, which leads to the necessity of extreme 
optimal using of the connecting channels. This is a very 
hard technical problem, but the experience, obtained 
during the exploitation of the second and beyond 
generation wireless communication systems, shows that it 
can be successfully solved by usage of wide band signals, 
possessing special correlation properties. First of all, the 
side lobes of the auto-correlation functions (ACFs) of the 
signals should be as small as possible, because they 
determine the resolution of multiple copies of a signal, 
passed to the receiver through different paths. The fading 
of the received signals, caused by multipath spreading of 
the waves, is called self–interference (SI) [1], [2]. Second, 
the cross-correlation functions (CCFs) of all pairs of 
signals of a communication system should be close to 
zero. This condition allows large number of asynchronous 
users to share a common channel with an admissible level 
of the mutual interferences (or multi access interferences – 
MAIs). 

Due to the importance of the signals with optimal 
correlation properties they have been extensively studied 
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since the 1950s of the twentieth century [1]-[7]. Despite of 
the taken efforts, a few families with these abilities are 
known at present [6], [7]. With regard two modifications 
of a method for synthesis of the so-named Costas arrays 
are suggested in the paper. The interest to this problem 
follows from the fact that the Costas arrays guarantee high 
level of resistance to SI in very severe conditions of the 
wave spreading. 

The paper is organized as follows. First, the basics of 
the Costas arrays are recalled. After that, two 
modifications of a method for synthesis of Costas arrays 
are presented. At the end, the areas of application of the 
results, obtained in the paper, are summarized. 

II. BASICS OF THE COSTAS ARRAYS 
In the 1960s Dr John P. Costas (USA) was puzzled by 

the poor practical performance of sonar systems [3]. He 
discovered that the rapidly time-varying channel made 
coherent processing inappropriate. As a consequence in 
the period 1962-1964 he set out to design a class of 
frequency-hopped waveforms, applicable in so severe 
conditions of the wave spreading. Most importantly, 
Costas was interested in waveforms with ideal (thumb-
tack) shape of the auto-ambiguity correlation function 
(AACF). Practically simultaneously with Dr Costas and 
(may be) independently in the former USSR, the above 
problem was studied by Dr L. E. Varakin and Dr V. N. 
Vlasov [2]. The work of the Dr Costas became much 
popularity and due to this reason, the frequency-hopped 
waveforms, synthesized for usage in the sonar systems, 
were named Costas arrays [4]-[7]. 

The Costas arrays are complex signals formed by 
frequency manipulation (FM). Actually, they are a train of 
elementary pulses (chips) with different carrier frequency 
and can be mathematically described as follows: 
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Here: 
- mU  is the amplitude of the elementary pulses; 
- 0f  is the basic carrier frequency of the signal; 
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- 0τ  is the duration of the elementary pulses; 
- f∆  is the step of the variation of the frequency of the 

elementary pulses; 
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 is a permutation of the 

integer numbers { }n...,,2,1 ; it defines the law of the FM 
and provides the thumb-tack shape of the AACF of the 
signal; 

- n is the length of the train of elementary pulses, 
forming the Costas Array. 

Often a Costas array can be described as a sequence of 
complex amplitudes of elementary signals: 
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where n
jj 1)}({ =ζ  is the set of complex amplitudes of the 

elementary pulses: 
 ( ) 1},1,...,1,0],).1.(2.exp[ −=−=−= injfdij j ∆πζ    (3) 

For simplicity (but without loss of generality) in the rest 
part of the paper it will be substituted in (1) and (2): 
 ][1 VU m = . (4) 

As a result of (4), the energy of the signals, studied in 
the paper, will be: 
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In [3] a precise, but complex, expression for the AACFs 
of the Costas arrays is evaluated. In order to simplify the 
synthesis of the Costas arrays, the most of authors prefer 
to use the so-named matrix representation. According to it, 
the permutation { }n

jjd
1=

, presenting the law of the FM of a 

Costas array, is described as a quadrate matrix with n 
columns (time slots) and n rows (frequency bins), 
satisfying the following conditions: 

A1. There are n dots, one in each row and one in each 
column (this is the permutation matrix constraint); 

A2. No two of the line segments between the dots of all 

possible ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
n

 pairs have the same length and slope (this is 

the ideal AACF constraint). 
These conditions are clarified on Fig. 1, where a Costas 

array with 5=n  and { } { }4,2,5,1,3
1

=
=

n
jjd  is depicted. 

According to (1), the carrier frequency of the j-th 
elementary pulse is 
 njfdff jj ...,,2,1,).1(0 =−+= ∆ , (6) 

 fnf ∆).1(0 −>> . (7) 
It should be emphasized that the carrier frequencies (6) 

are spaced by the interval 
 1

0
−=τ∆f , (8) 

which provides the so-named orthogonal division of the 
carriers. This fact is shown on Fig.1 by a hatching of the 
small squares, located in the jd -th row and j-th column. 

Indeed the main part of the spectrum of the elementary 
pulses of the studied Costas array is concentrated in them. 

 
Fig. 1. The matrix representation of the Costas arrays. 

 
In the process of communication, the carrier frequencies 

of the signals are changed by the so-named Doppler 
Effect, caused by the motion of the correspondents 
relatively one to other. More specifically, if sf  is the 
carrier sequence of the transmitted (sent) signal then the 
carrier sequence rf  of the received signal is: 

 s
r
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Here rv  is the velocity of the radial motion of the 

transmitter relatively to the receiver, 0v  is the velocity of 
the spreading of the waves, 2=k  in cases of radar or 
sonar systems and 1=k  for the usual communication 
systems. The sign is “plus” in case of convergence of the 
correspondents and is “minus” otherwise. 

The aim of the receiver is to find simultaneously both 
the Doppler-shift of the carrier frequency and the time-
shift of the received signal respectively to an etalon of the 
expected signal. In order to reach this aim [1], [2], the 
receiver performs the so-named correlation processing of 
the received signals, because this procedure maximizes the 
signal-to-noise ratio in the presence of white noise. As 
known [1], [2], the correlation processing is a calculation 
the CCF of the received signal and the etalon of the 
expected signal. Here it should be emphasized on 
following facts. 

First, the AACF of a signal reduces to the ACF of the 
signal in case of a zero Doppler-shift and to the CCFs of 
the signal and its frequency shifted copies otherwise. 
Hence, the AACF of a signal is a generalization of its 
ACF. 

Second, the receiver can perform successfully its role 
only if the differences among the used (etalon) signal and 
its frequency and time-shifted copies are as significant as 
possible. In other words, the AACFs of the used signals 
must be similar to a delta pulse (i.e. must have a thumb-
tack shape). 

Third, in case of the Costas arrays it is appropriate the 
frequency and time-shifts of the signals to be measured by 
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the units f∆  and 0τ  respectively. 
The above facts are clarified on Fig.1, where a 

frequency and time shifted copy of the etalon Costas is 
depicted as a permutation matrix, filled with small circles. 
The circles designate the carrier frequencies of the 
elementary pulses of the copy of the signal. For simplicity 
on Fig.1 the shifts of the copy are chosen to be f∆.2  and 

0.2τ  respectively. 
Accounting the matrix representation of the Costas 

arrays (Fig.1), it is not hard to conclude that the maximal 
contrast between the etalon signal and all its frequency 
and time shifted copies occurs in the case when only one 
circle coincides with a hatch. This is possible if all radius-
vectors, formed by pairs of dots on the matrix 
representation of the Costas array, differ one from other 
by length or slope. 

Due to their valuable correlation properties, the Costas 
arrays have been studied by many authors [3], [6], [7]. It is 
found that despite of usage of sophisticated computational 
methods for searching [7], the finding of Costas arrays 
remains a very hard task. Fortunately, at present several 
constructive methods for synthesis of Costas arrays are 
known [1], [4]-[7]. They allow the creating of Costas 
arrays with an arbitrary large size (length) n. With regard 
to these reasons the synthesis of families of Costas arrays, 
possessing both optimal auto-correlation and cross-
correlation properties, has great practical importance. This 
problem is studied in more detail in the next part of the 
paper. 

III. AN IMPROVED METHOD FOR SYNTHESIS OF COSTAS 
ARRAYS 

The mentioned above constructive methods for 
synthesis of Costas arrays exploit the features of the finite 
algebraic fields (i. e. Galois Fields – GF). The most 
general of these methods are the following [4], [5], [7]. 

Method 1 (Welch’s method): Given prime p and an 
arbitrary primitive element α  of the GF(p), the sequence: 

 { } { }1211
1

...,,, −−
=

= pp
jjd ααα  (10) 

is a Costas array with length 1−= pn . 
Method 2 (Golomb’s method): Given a prime power 

mpq =  and arbitrary primitive elements α  and β  of the 
GF(q), the sequence: 
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    (11) 

is a Costas array with length 2−= qn . 
It is known that every finite algebraic field has exactly 

 )1( −= qN ϕ  (12) 
primitive elements (roots). Here (.)ϕ  is the so-named 
Euler’s function. 
 Now the following abilities of the above methods 
should be taken in consideration. 

First, the Costas arrays, obtained by the constructions 
(10) and (11) have complex pseudo-random structure, 
which is typical in general for all signals with optimal 

correlation properties [1]-[3], [6], [7]. 
Second, if the construction (10) is used with two 

different primitive elements α  and β , the obtained 

permutations { }n
jjd

1=α  and { }n
jjd

1=β  will coincide in only 

one position. Indeed, let the sequences { }n
jjd

1=α  and 

{ }n
jjd

1=β  are created by the Method 1, and 

 jj dd βα =  (13) 

for some }1...,,2,1{, =∈ pjj . Then from (10) follows 

 jj βα = , (14) 
which is possible only for 1−= pj . Analogously it is not 
hard to see, that if the construction (11) is used with two 
different pairs of primitive elements (α , β ) and (α , γ ), 

the obtained permutations { }n
jjd

1=αβ  and { }n
jjd

1=αγ  will not 

coincide. 
The above conclusions lead to the following Improved 

Method for Synthesis of Families of Costas Arrays. 
Step 1) For given n, satisfying 1−= pn  or 2−= mpn , 

p prime, a no empty family of Costas arrays is generated, 
according to the Method 1 or Method 2. 

Step 2) The cross-correlation properties of the Costas 
arrays, belonging to the above family, are examined by a 
software module, created by means of the MATLAB. 

Step 3) The family of Costas arrays, created during the 
previous step, is separated in all possible pairs. After that 
the ambiguity cross-correlation functions (ACCFs) of the 
pairs are calculated. 

Step 4) All Costas arrays which form pairs with 
maximal level of the CCF exceeding the threshold n  are 
rejected. 

The value n  is chosen as an acceptable maximum 
level of the ACCF of the pairs of Costas arrays because 
the minimal bounds of the maximal level of the CCFs of a 
family of signals, is [8]: 

 ][][
)/1(
)/1(1.maxmin VnV

Nn
NnL ≈

−
−

≥ . (15) 

Here maxminL  is the minimal maximum of the level of 

the CCFs and N is the size of the family of signals. 
The results of the exploring of the Improved Method for 

Synthesis of Families of Costas Arrays, will be illustrated 
for 10,11 == np . In this case, according to (12), 4=N  
primitive elements exist. Due to this reason, the usage of 
the Method 1 gives a family of Costas arrays with 4 
members, which form 6 pairs of different Costas arrays. A 
general view of the AACF of these pairs of signals is 
presented on Fig.2, whereas on Fig.3 their maximal levels 
are shown (Ruv is the maximal level of the ACCF of the 
u-th and v-th sequences). 
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Fig. 2. The general view of the AACFs of the Costas 

arrays with length n=10. 
Figures 2 and 3 demonstrate that the maximal levels of 

the ACCFs of the Costas signals, belonging to the 
considered family, do not exceed the threshold 

316,311 = , and, consequently, the created family 
possesses optimal correlation properties. 

 
Fig. 3. The maximal levels of the ACCFs of the pairs of 

Costas arrays with length n=10. 
Here it should be stressed that the condition (8) has a 

crucial role for the Costas arrays. A more precise analysis 
shows that it takes place only for the sonar systems, 
because only for these systems the magnitude of the 
Doppler shift of the carrier frequency of the signal is 
bigger than f∆ . As in the high frequency radio-systems 
the Doppler-shift is many times smaller than f∆ , the 
frequency shifts can be ignored during the analysis of the 
matrix representation of the signals of high-frequency 
radio-systems. 

Due to this reason the forth step of the above Improved 
Method for Synthesis of Families of Costas Arrays can be 
excluded. Moreover, it can be modified as follows: 

Step 1) For given n, a permutation matrix is generated. 
This can be done by constructions (10), (11) or any 

computational method as presented in [7], [9], [10]. 
Step 2) Let { } { }n

n
jj dddd ...,,, 211

=
=

 is the permutation, 

generated during the previous step and b is an element, co-
prime to n. Then the family of permutations: 
 { } { } 1...,,1,...,,,)( 211

−==
=

ηldddbld n
ln

jj  (16) 

In (16) η  is the multiplicative order of b modulo n (i.e. η  

is the smallest integer with the property nb mod1≡η ). 
The verifying of the Step 2 of the Modified Method for 

Synthesis of Families of Costas Arrays is not hard and is 
left. 

IV. CONCLUSION 
In the paper two modifications of a method for 

synthesis of families of Costas arrays are suggested. This 
work is motivated by following reasons. 

First, the Costas arrays are signals with complex inner 
structure. As a result their application in the sonars leads 
to a significant enlargement of the range of distance 
measurements without loss of accuracy and ability to 
discriminate neighboring objects. 

Second, the practical implementation of the Costas 
arrays is more complex than the implementation of some 
other types of complex signals (for example Barker 
signals, sequences with maximal length and so on) [1], 
[2]. Anyway, the families of the Costas arrays, which can 
be formed by the suggested in the paper methods, ensure 
the proper work of the communication devices in very 
severe conditions of the spreading of waves. 
Consequently, these families can be successfully applied 
in the systems, where the functional reliability has crucial 
importance. 
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