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From Physical Mobile Channel to FIR Channel

with Stationary, Ergodic Coefficients
Venceslav Kafedziski

Abstract—We develop a discrete time Finite Impulse Response
(FIR) channel model of a wireless mobile channel. We start with
a physical ray model with a number of distinct scatterer clusters.
We assume that the positions of scatterer clusters are fixed, but
the contribution of each cluster is a sum of contributions of
a large number of elementary scatterers. We show that under
certain assumptions, the signal obtained as a result of each cluster
is a complex Gaussian, stationary and ergodic random process.
We then derive an approximate FIR discrete time channel
impulse response for the time-varying channel impulse response,
which includes the transmit and receive filters. We show that its
coefficients vary according to a stationary and ergodic proper
complex Gaussian vector random process.

Index Terms—Physical mobile channel, WSSUS channel,
proper complex process, FIR channel, stationarity, ergodicity

I. INTRODUCTION

The typical approach to modeling and simulation of a
multipath fading channel is by generating path delays from
a given probability distribution, (e.g. exponential), and then
filtering the complex path amplitudes so that the resulting
Doppler power spectrum has the proper shape ([1]). In [1]
orthogonalization of the channel impulse response including
the transmitting filter, with respect to the channel delay is
performed. An alternative Monte Carlo approach is to shape
the spectrum by generating a large number of complex expo-
nentials with (Doppler) frequencies drawn from a probability
distribution proportional to the Doppler power spectrum ([2]).

An original approach to the channel modeling and simula-
tion based on physical grounds is described in [3]. Doppler
shifts depend on the angles between the incoming waves
obtained by scattering and the velocity vector. A random
spatial distribution of scatterers is assumed. Each scatterer is
modeled as a collection of elementary scatterers with equal
reflected power; the elementary scatterers are distributed over
a narrow range of angles.

We follow [3] to obtain the physical ray model. We assume
that the positions of scatterer clusters are given, and that the
spatial distribution of elementary scatterers within a cluster is
defined by the angle distribution of the incoming waves. We
use central limit theorem to prove that the resulting signal of
a single cluster is a proper complex Gaussian process.

We then derive a discrete time model for the time-varying
channel impulse response, which includes transmit and receive
filters, using symbol rate sampling, and show that this model is
equal to the one obtained by the best mean square approxima-
tion of transmit filter - channel impulse response combination.
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The main contribution of this work is to establish that given
certain assumption on the distribution of the angles of arrival
from the elementary scatterers in the clusters, the complex
amplitudes of signals that arrive at the receiver at different
delays form a zero mean stationary ergodic proper complex
Gaussian vector process in time. This is a starting point to
show that the coefficients in the FIR channel model vary
according to a stationary ergodic proper complex Gaussian
vector process. Ergodicity is important assumption to obtain
capacity expressions and to use adaptive modulation tech-
niques on fading channels ([4], [5]). Although FIR channel
models similar to the one derived here are well known, usually,
stationarity and ergodicity of the time varying FIR coefficients
are tacitly assumed, with no deeper analysis or justification.

In Section II we define our physical channel model. We
show that our physical model is a Wide Sense Stationary
Uncorrelated Scaterring (WSSUS) channel model. We prove
that under certain assumption on the angle distribution of
elementary scatterers within a cluster, the processes due to the
scatterer clusters are ergodic. In Section III we obtain the FIR
channel model and prove that FIR coefficients vary according
to stationary, ergodic proper complex Gaussian vector process.

II. PHYSICAL MOBILE CHANNEL MODEL

One characteristic of the mobile channel as a multipath
medium is the time spread introduced in the signal transmitted
through such channel. A second characteristic is time variation
of channel impulse response as a result of vehicle movement.

In the case when we have discrete paths, the time varying
channel impulse response is ([6]):

c(τ, t) =
∑
m

am(t)e−i[2πfcτm(t)+φm(t)]δ[τ − τm(t)] (1)

where am(t) is the attenuation factor τm(t) is the propagation
delay and φm(t) is the retarded phase of the signal received
on the mth path.

For times over which the scatterer geometry does not change
much due to vehicle movement, we can assume that am(t) ≈
am, φm(t) ≈ φm. Similarly, we can assume τm(t) ≈ τm in
δ[τ − τm(t)], but, in the exponent, we have to keep two terms
in the power series for τm(t), i.e. τm(t) ≈ τm + τ̇m. The
impulse response is simplified to

c(τ, t) =
∑
m

amei(2πλmt+ψm)δ(τ−τm) =
∑
m

cm(t)δ(τ−τm)

(2)
where λm = −fcτ̇m is the Doppler frequency shift and ψm =
−[2πfcτm + φm] is the total phase factor.

Frequently, scattering takes place over a large area of rough
(relative to the wavelength) or irregular surfaces such as
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vegetation or objects close to the antennas. Such scattering is
not specular but diffuse, and a cluster of diffusely scattered
rays is composed of a multitude of individual rays which
exhibit less directivity and no phase coherence. In some cases
of interest, all incoherent rays of a cluster have approxi-
mately equal propagation delays τm,n = τm + ∆τm,n, and
approximately equal Doppler shifts, λm,n = λm +∆λm,n, for
n = 0, . . . , Nm−1 ([3]). The complex amplitude of the signal
scattered from this cluster is:

Am(t) =
Nm−1∑
n=0

cm,n(t) =
Nm−1∑
n=0

am,neiψm,nei2πλm,nt (3)

We assume uniformly distributed phases ψm,n in [0, 2π]. If
there exist M such clusters with distinct delays τm, the channel
impulse response becomes

c(τ, t) =
M−1∑
m=0

Am(t)δ(τ − τm) (4)

where we assume that the complex lowpass signal experiences
effectively the same delay τm for all elementary scatterers with
delays τm,n. This model, with M fixed and relatively small
(on the order of 10-20) and all Nm for m = 0, . . . M −1 very
large will be the one of our interest.

We first characterize random processes Am(t).
Theorem 2.1: Let the channel model described by (4) and

(3) be given. Fix m ∈ {0, . . . , M−1}, and denote the number
of scatterers in the mth cluster with N . Assume that the
amplitudes am,n, n = 0, . . . , N−1 of the elementary scatterers
of the m-th cluster can be represented as

am,n =
a′m,n√

N
(5)

where a′m,n, n = 0, . . . , N − 1, are independent identically
distributed (iid) zero mean random variables with variances
E[a′m,n]2 < ∞. Assume that ψm,n, n = 0, . . . , N − 1, are
uniformly distributed on [0, 2π] and independent of am,n, and
that λm,n, n = 0, . . . , N − 1, are random variables, inde-
pendent of ψm,n and am,n. When the number of elementary
scatterers N →∞, Am(t) is a zero mean, stationary, proper,
complex Gaussian random process.
Proof: Since Am(t) is complex, we can write Am(t) = x(t)+
iy(t). Consider

ul = [x(t1), x(t2), . . . , x(tl), y(t1), y(t2), . . . y(tl)]′

= [x1, x2, . . . , xl, y1, y2, . . . , yl]′ (6)

From (3), xi = Re[zi] and yi = Im[zi] where

zi =
N−1∑
n=0

a′m,n√
N

ei(2πλm,nti+ψm,n) (7)

for i = 1, . . . , l. It is trivial to show that E[xi] = E[yi] = 0.
Therefore, Am(t) is a zero mean complex process. We first
show that the marginal distribution of Am(t) is Gaussian. To
use the central limit theorem we need to show that the vari-
ances of a′m,n cos(2πλm,nt + ψm,n) and a′m,n sin(2πλm,nt +
ψm,n) are finite. From [7], p.224,

E[(a′m,n cos(2πλm,nt + ψm,n))2] =
E[a′2m,n]

2
< ∞ (8)

E[(a′m,n sin(2πλm,nt + ψm,n))2] =
E[a′2m,n]

2
< ∞ (9)

We show that when N → ∞, ul has a joint Gaussian
distribution for any finite l. We use the definition ([7] p.186):

Definition 2.1: The random variables x1, . . . , xn are jointly
Gaussian, if and only if the sum

a1x1 + · · ·+ anxn (10)

is a Gaussian random variable for any choice of a1, . . . , an.
It would be tempting to assume that a linear combination of
Gaussian random variables is Gaussian, but this is not true in
general. This is true if the components are independent. In our
case we form the linear combination

ξ = ω1x1 + ω2x2 + · · ·ωlxl + ωl+1y1 + ωl+2y2 + · · ·+ ω2lyl

(11)
where ω1, ω2, . . . , ω2l are arbitrary constant weights. Accord-
ing to the central limit theorem, when N →∞, ξ assumes a
Gaussian distribution. By Definition 2.1 ul is jointly Gaussian
for any finite l. Therefore, Am(t) is a complex Gaussian
process. Note that for any ∆t

E[Am(t + ∆t)Am(t)] = lim
N→∞

N−1∑

j=0

N−1∑

k=0

E[am,jam,k]

E[ei(2πλm,j(t+∆t)+ψm,j+2πλm,kt+ψm,k)] = 0

since ψm,j and ψm,k are uniformly distributed in [0, 2π].
Thus, Am(t) is a proper complex zero mean Gaussian process.
Its statistics can be described in terms of its autocorrelation
function Rm(t, t + ∆t) = E[Am(t + ∆t)A∗m(t)] only:

Rm(t, t + ∆t) = lim
N→∞

N−1∑

j=0

E[a2
m,je

i2πλm,j∆t] (12)

Thus, Am(t) is a stationary process, since it is Gaussian.
Assume that the mobile is moving with velocity vector v.

We set v = |v|. Denote the incident angle between the n-
th partial wave am,nei(2πλm,nt+ψm,n) in the m-th scatterer
and the velocity vector v by αm,n. The elementary Doppler
shifts are λm,n = λmax cos αm,n, where λmax = fc

v
c is

the maximum Doppler frequency shift for a given velocity
v and carrier frequency fc. Assuming that the amplitudes and
angles of the elementary waves are independent, and that all
the amplitudes am,j for j = 0, . . . , N − 1 are identically
distributed, and all the angles αm,j are identically distributed,
we obtain

Rm(∆t) = lim
N→∞

E[a2
m]

N−1∑

j=0

E[ei2πλmax∆t cos αm,j ]

= E[a′2m]
∫ α′′

α′
dαmp(αm)ei2πλmax∆t cos αm

where p(αm) denotes the probability density function of αm,j

for j = 0, . . . , N−1 and [α′, α′′] ⊆ [0, 2π]. The average power
in the process Am(t) is ρm = Rm(0) = E[a′2m] < ∞.

Due to distinct clusters being distant from each other, it
is fair to assume that all Am(t), m = 0, . . . , M − 1 are
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independent. Then, the cross-power density is

R(τ, ∆t) = E[c(τ, t + ∆t)c∗(τ, t)] =
M−1∑
m=0

Rm(∆t)δ(τ − τm)

(13)
and the model used here to describe the physical mobile
channel is a WSSUS channel model ([6]).

In Clarke-Jakes channel model p(αm) is assumed uniformly
distributed in [0, 2π], i.e. p(αm) = 1/(2π), which corresponds
to an isotropic incident field. In [8] we derived scattering
functions without the assumption of an isotropic incident field.
For a uniform distribution of scatterers in an ellipse with the
transmitter and receiver in its foci, in [8] we obtained a closed
form expression for the scattering function.

Theorem 2.2: Assume that p(αm) is nonzero on the interval
[α1, α2] ⊆ [0, 2π], and is a bounded function (i.e. satisfies the
condition p(αm) < C for any α ∈ [α1, α2], where C is a finite
constant). Then the process Am(t) is ergodic.
Proof: Sufficient condition for a zero mean stationary Gaussian
process to be ergodic, is that lim|∆t|→∞R(∆t) = 0. Here

R(∆t) = lim
|∆t|→∞

ρ

∫ α2

α1

dαp(α)ei2πλmax∆t cos α (14)

By a change of variables λ = λmax cos α, we obtain

ρ

∫ λ2

λ1

s(λ)√
λ2

max − λ2
ei2πλ∆tdλ = ρ

∫ λ2

λ1

X(λ)ei2πλ∆tdλ

(15)
where s(λ) is bounded since p(α) is (i.e. there exists a finite
constant C1 such that s(λ) ≤ C1 for all λ ∈ [λ1, λ2]).
From Fourier theory it follows that if x(t) and X(λ) are a
Fourier transform pair, then

∫ |X(λ)|dλ < ∞ implies that
lim|t|→∞ x(t) = 0. We have R(∆t) = ρx(∆t). Our goal is to
prove that x(∆t) → 0 as |∆t| → ∞. It thus suffices to show
that

∫ |X(λ)|dλ < ∞. Denote X1(λ) = C1/
√

λ2
max − λ2.

Note that
∫ λ2

λ1
|X1(λ)|dλ ≤ ∫ λmax

−λmax
|X1(λ)|dλ = πC1 < ∞.

From X(λ) ≤ X1(λ) and X , X1 nonnegative, it follows that∫ λ2

λ1
|X(λ)|dλ ≤ ∞. Thus, R(∆t) → 0 as |∆t| → ∞.

All the previous results can be extended.
Theorem 2.3: [A0(t), . . . , AM−1(t)] is a zero mean station-

ary ergodic complex proper Gaussian vector process.
Proof: We showed that Am(t) are zero mean complex Gaus-
sian processes. By assumption all Am(t) for m = 0, . . . , M−1
are independent. We set Am(t(m)

i ) = x
(m)
i +jy

(m)
i where t

(m)
i

for m = 0, . . . , M −1, i = 1, . . . , lm is a set of arbitrary time
values, and lm are arbitrary integers. To show that the vector
process [A0(t), . . . , AM−1(t)] is Gaussian, we must show that
x

(0)
1 , . . . , x

(0)
l0

, y
(0)
1 , . . . , y

(0)
l0

, . . . , x
(M−1)
1 , . . . , x

(M−1)
lM−1

,

y
(M−1)
1 , . . . , y

(M−1)
lM−1

are jointly Gaussian. Consider

ξ =
M−1∑
m=0

lm∑

i=1

(ω(m)
i x

(m)
i + ω

(m)
lm+iy

(m)
i ) (16)

where ω
(m)
i , ω

(m)
lm+i for m = 0, . . . , M − 1 and i =

1, . . . , lm are arbitrary constants. Each of the inner sums
in (16) is a Gaussian random variable, since each Am(t)
is a Gaussian process. By the Cramer’s theorem ξ is

a Gaussian random variable, as a sum of indepen-
dent Gaussian random variables. Now, by Definition 2.1,
x

(0)
1 , . . . , x

(0)
l0

, y
(0)
1 , . . . , y

(0)
l0

, . . . , x
(M−1)
1 , . . . , x

(M−1)
lM−1

,

y
(M−1)
1 , . . . , y

(M−1)
lM−1

have joint Gaussian distribution since

ξ is an arbitrary linear combination of x
(m)
i and y

(m)
i for

m = 0, . . . , M − 1, i = 1, . . . , lm. Thus, the vector
process [A0(t), . . . , AM−1(t)] is complex Gaussian. Since
any two processes Am(t) and An(t) are uncorrelated, the
cross-correlations are identically equal to zero, and thus,
stationarity, ergodicity and properness of the vector process
[A0(t), . . . , AM−1(t)] are implied by the stationarity, ergod-
icity and properness of the component processes Am(t),
m = 0, . . . , M − 1, respectively.

III. DERIVING FIR CHANNEL MODEL

In this section we derive an approximate equivalent discrete
time channel model for digital transmission. We start from
the time varying channel model derived in Section II and
also include the transmitter and receiver filters with impulse
responses gt(t) and gr(t), respectively. We choose gt(t) and
gr(t) such that gr(t) = gt(−t) and η = gt ∗ gr to meet the
Nyquist citerion. We model the data stream by

I(t) =
∑

n

unδ(t− nT ) (17)

where un is a sequence of complex signal points from the
signal set. The signal at the output of the channel is

r(t) =
∑

n

un

∫
c(α, t)gt(t− α− nT )dα (18)

The output y(t) of the receive filter due to the signal only is

y(t) =
∑

n

un

∫
dα

∫
dγc(α, γ)gr(t− γ)gt(γ − α− nT )

(19)
Using gr(t) = gt(−t) and c(τ, t) from (4), we get:

y(t) =
∑

n

un

∑
m

∫
dγAm(γ)gt(γ−t)gt(γ−τm−nT ) (20)

Assuming that Am(γ) does not change significantly in the
interval over which gt(γ − t) is significant we obtain

y(t) =
∑

n

un

∑
m

Am(t)η(t− τm − nT ) (21)

By sampling this expression at times kT we obtain

y(kT ) =
∑

n

un

∑
m

Am(kT )η(kT − τm − nT ) (22)

Setting:
qµ(kT ) =

∑
m

Am(kT )η(µT − τm) (23)

where µ is an integer, we obtain the discrete time model:

y(kT ) =
∑

n

unqk−n(kT ) (24)

The derived discrete time channel model is suboptimal. Even
if Am don’t change with time the discrete time model obtained
by symbol rate sampling is not equivalent to the continuous
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time model unless the receiver-transmitter filters are band-
limited to 1/2T . When channel varies in time, the sampling
rate at channel output is to be increased by the amount of
Doppler spread.

Theorem 3.1: The discrete channel model (24) is identical
to the one obtained as the best mean square approximation of
the concatenated transmitter filter - channel impulse response.
Proof: Denote as h(τ, t) the time varying channel impulse
response with transmitter filter included, i.e.

h(τ, t) =
∫

c(α, t)gt(τ − α)dα (25)

Using the approach in [1] we compute an optimal mean square
approximation ĥ(τ, t) to h(τ, t):

ĥ(τ, t) =
∞∑

µ=−∞
pµ(t)gt(τ − µT ) (26)

where

pµ(t) =
∫ ∞

−∞
h(τ, t)gt(τ − µT )dτ =

∫
dαc(α, t)η(α− µT )

(27)
For the assumed physical ray channel impulse response in (4)

pµ(t) =
∑
m

Am(t)η(µT − τm) (28)

Using the equivalent impulse response h(τ, t) we have

r(t) =
∫

h(γ, t)[
∑

unδ(t−nT−γ)]dγ =
∑

n

unh(t−nT, t)

(29)
Setting h(τ, t) = ĥ(τ, t) and using the expansion (26), we get

r(t) =
∑

n

un

∑
µ

pµ(t)gt(t− nT − µT ) (30)

and

y(t) =
∫

r(γ)gr(t− γ)dγ

=
∑

n

un

∑
µ

∫
pµ(γ)gt(γ − nT − µT )gt(γ − t)dγ

Assuming that pµ(γ) does not change significantly during the
interval over which gt(γ − t) is significant, we obtain

y(t) =
∑

n

un

∑
µ

pµ(t)η(t− nT − µT ) (31)

Sampling this signal at the symbol rate and using the Nyquist
property of η we subsequently get

y(kT ) =
∑

n

un

∑
µ

pµ(kT )η(kT − nT − µT )

=
∑

n

unpk−n(kT ) (32)

Since qµ(kT ) = pµ(kT ), (24) and (32) are identical.
Omitting T ’s and setting k − n → n in (24) we get:

yk =
∑

n

qn(k)uk−n (33)

Assuming that qn(k) are nonzero only for indices n between
−ν− and ν+, introducing delay ν−, and setting ν = ν− + ν+

we obtain

yk =
ν∑

n=0

hn(k)uk−n + wk (34)

where hn(k) = qn−ν−(k) and noise term is also added.
Equation (34) describes a FIR channel model with time
varying coefficients, which can be used in many applications.
Note that k is the time index, and n is the lag (delay) index.
Define the vector random process h(k) = [h0(k), · · · , hν(k)]′.

Theorem 3.2: For the assumed physical channel model
from Section II and the approximate FIR discrete time model
described by a vector random process h(k), obtained by
sampling at the symbol rate and truncating the coefficients
with negligible power, the vector process h(k) is a stationary
and ergodic complex proper zero mean Gaussian process.
Proof: We use (23), which shows that qn(k) (and thus hn(k))
for k ∈ Z are linear combinations of the processes Am(kT )
for k ∈ Z. To show that h(k) is a vector Gaussian process we
use Theorem 2.3 and Definition 2.1. Properness of h(k) is a
consequence of properness of Am(t).

To show that the vector process h(k), k ∈ Z is stationary we
need to show that the correlations E[hp(k + l)h∗q(k)], k ∈ Z,
0 ≤ p, q ≤ ν, depend on the lag l only. From (23) we get
M−1∑
m=0

Rd
m(l)η(τm − (p− ν−)T )η(τm − (q − ν−)T ) = Rp,q(l)

(35)
where we used the notation Rd

m(l) = Rm(lT ) = E[Am(kT +
lT )A∗m(kT )], and this is a function of l only due to the
stationarity of Am(t). Therefore, the correlations are functions
of the lag l only. Note that the crosscorrelations between
hp(k + l) and hq(k) might be nonzero.

To show that h(k) for k ∈ Z is an ergodic vector process,
it suffices to show that all the correlations Rp,q(l), for p, q =
0, . . . , ν approach zero as |l| → ∞. According to (35) the
FIR coefficient correlation functions are linear combinations
of the correlations Rd

m(l). From Theorem 2.2 Rd
m(l) → 0 as

|l| → ∞ for all m, which in turn implies that Rp,q(l) → 0 as
|l| → ∞ for all p, q = 0, . . . , ν.
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