17th Telecommunications forum TELFOR 2009

Serbia, Belgrade, November 24-26, 2009.

Government Controlled Mobile VOIP

Rossi Kamal
Department of CSE
University of Dhaka

Email: rossikamal @gmail.com

Abstract—VOIP (Voice Over Internet Protocol) is becoming
popular day by day. With VOIP, people can make local or
internet phone calls with little cost, can take part in audio or
video conferences. At the same time, government is concerned
about the anti-social activities like terrorism or threats going in
phone conversations. There should be a control of government
over voice traffic going in IP packet data based VOIP networks.
Government Controlled Mobile VOIP presents such a software
solution where a government agent can monitor and control the
voice data passing between two mobile VOIP clients.

I. INTRODUCTION

VOIP based communication network is taking place of
circuit switch based traditional phone system. People can make
an audio or video call to home or abroad at the lowest cost
using internet. They can enjoy video conference or any kind
of real time multimedia based streaming technology. With the
expansion of wireless network and mobility, these advantages
are encouraging people to think about VOIP based solutions.

Government has become worried in a social security issue
that is correlated with threats or similar antisocial activities
performed against any individual. People often deploy VOIP
services like IP calls or video conferencing in such harmful ac-
tivities. In some cases government cannot track or record voice
conversations between two mobile users. A government server
(VOIP gateway server) can set the VOIP session between two
mobile users but it might not know what conversation is going
there. For example, A Symbian C++ mobile client can talk to
other mobile client in real time without the involvement of
any interim server in a media session.

Government Controlled Mobile VOIP gives governments
control over IP based mobile phone conversations. In our
developed solution, a VOIP gateway server is acting as a
government agent. This agent can monitor, control or record
conversations of two mobile VOIP clients. These J2ME based
clients can talk to each other in a VOIP media session.

Our software has separate solutions for both HTTP and RTP
based government agents. In first solution, a J2ME client cap-
tures voice of caller and sends to an HTTP based government
agent. The receiver J2ME client plays it from HTTP agent and
receiver can listen to sender. In second solution, the agent is a
RTP streaming server that streams senders voice. The receiver
is a J2ME RTSP client who listens to server using RTSP
protocol. Second solution enables receiver to listen almost in
real time. The agent can track and record users, conversations
and call related detail information (bit rate, data sent etc).

Mosaddek Hossain Kamal
Department of CSE
University of Dhaka

Email: tushar@cse.univdhaka.edu

Dr Kazi Muheymin
Institute of Information Technology
University of Dhaka
Email: muheymin@yahoo.com

II. DETAILED DESCRIPTION

When two VOIP clients want to talk to each other, they
first go through a signaling session with the presence of an
interim VOIP server. Then VOIP clients talk to each other
in media session with HTTP or RTP. VOIP protocols differ
in their signaling sessions those set a secured communication
path between two clients. Just after the signaling session, VOIP
clients transfer media data to each other.

Let us consider that a caller has established a VOIP session
with a receiver by a signaling session. Now they are ready to
talk to each other in media session. Both of them are using
GOVERNMENT CONTROLLED MOBILE VOP client. First,
let us see first solution based on HTTP based Government
agent. Then we will move on to RTP based approach.

A. HTTP Based Solution

Our HTTP based solution ensures government agents’ con-
trol over mobile clients in a HTTP-based VOIP media session.

The solution includes software components at both mobile
and server end. Mobile-end components are MySender (J2ME
application at caller end to capture voice and to upload to
server), MyListener (J2ME application at receiver end to
receive and play callers voice). The server end component is
MyUploader (PHP script to upload voice to HTTP server).
We have used open source apache web server as the HTTP
Sserver.

1) Voice capturing at caller end: When a caller talks
on phone using internet, GOVERNMENT CONTROLLED
MOBILE VOP client will capture and record the voice data
[Figure 1]. Let us see what happens inside.

153

Government
monitors Voice =3HTTP Server
Traffic

X
\ég@{\qo@
& ﬂ

MySender

N
N 3
[
[
%>

Q MyListener
Voice Capture Recgjéi &
play media
data

Figure 1: Two Government Controlled Mobile VOIP clients are talking in media
session of VOIP with presence of a government agent.

MySender application captures the voice data by creating a
player using Manager class of MMAPI (Mobile Media API)
[Figure 2].
p=Manager.createPlayer(”capture://audio?

encoding=pcm rate=8000");
igure 2: Capturing voice with MySender

The voice is captured with pcm encoding, a baud rate of
8000.

MySender then records the voice data by getting control of
record and then by setting the record stream

] rc=(RecordControl)p.getControl(’RecordControl”);

Figure 3: Recording voice at MySender.

2) Uploading voice data to server: MySender uploads
recorded data to HTTP server using HTTP-multipart post.
[Figure 4]

HttpMultipartRequest req = new HttpMultipartRequest

("http://localhost/MyUploader.php”, params,

“uploadfield”, “my.wav”, “audio/wav”, fileBytes);

Figure 4: Uploading from MySender

Algorithm:

1. Create byte array from the recorded audio data.

2. Add header parts to the start and end of the data.

3. Create HTTP Connection to the server.

4. Define multipart-property of the data to be sent [Figure
5]

hc.setRequestProperty(”Content-Type”,
“multipart/form-data; boundary=" +

getBoundaryString()););
igure 5: Setting multipart property of data.

5.Define HTTP post type

] hc.setRequestMethod(HttpConnection. POST);

Figure 6: Defining HTTP Posttype

3) Receiving playing media data from server with HTTP :
GOVERNMENT CONTROLLED MOBILE VOIP at receiver
end has an application MyListener that receives audio data sent
from the HTTP server and plays it to the receiver. So, receiver

can listen to what sender is saying to him. MyListener creates
a player specifying the url of HTTP server. [Figure 6].

player=Manager.createPlayer
(http://localhost/my.wav);

Figure 6:Creating player at receiver end by MyListener..

Algorithm:

1. Set an alert with a delay as we are loading media data
from HTTP server. 2. Create a player of Manager class of
MMAPI with the url of HTTP server as locator argument 3.
Create event handler to control (start, stop etc) player.

But, streaming over HTTP is an inefficient solution. Be-
cause, HTTP is based on Transmission Control Protocol
(TCP). TCP is concerned about whether media data has
reached destination reliably, it does not consider when the data
has been delivered from source or has reached destination. On
the other hand, RTSP is based on both User Datagram Protocol
and TCP. UDP is a connectionless protocol that is concerned
about faster transmission of media data rather than reliability.
RTSP has built in control mechanism that lets mobile client
to play, resume or stop data streamed from server. A RTSP
session involves both RTP and RTCP. RTSP is somewhat like
a control protocol, but RTP is related with streaming of that
data. RTCP, co-related with RTP indicates quality of steaming
data to server and receiver.

B. RTSP Based Solution

In RTP based solution,a RTP streaming-based government
agent is in control of VOIP media session of two mobile
clients.

This solution has complex software component than the
previous one. This includes MyRTSPListener (J2ME client at
receiver that initiates RTSP session with RTP streaming server
). Server software component is a RTP streaming server(In our
solution,we have used Darwin Streaming Server).MySender
and MyUploader of previous solution are kept in their posi-
tions.

MySender captures data and uploads voice data to a Darwin
Streaming Server. MyRTSPListener at receiver end initiates a
RTSP session with that server. A government agent on stream-
ing server stores voice data and keeps log of conversation.
[Figure 7]. As,MySender is same as in previous session, lets
move onto MyRTSPListener in detail.

154

Government Darwin
monitors |4 .
F=—=> Streamin
Voice Traffic Server C
o
/\Q O
‘é‘\. '082 ﬂ -
& =

R&

MySender
; MyRTSPListener

Voice Capture

Receive &
play media
data

Figure 7:RTP based Government Controlled Mobile VOIP.

MyRTSPListener initiates a RTSP session with the Darwin
streaming server by sending a DESCRIBE command. The
request is intended to know about information of the media
file on server. The URL of the media file contains RTSP
version that MyRTSPListener is using, CR/LF. The next line
is the sequence number of the request and it increments
with each subsequent request made to streaming server. All
RTSP commands are terminated by a single line. The session
initiation command DESCRIBE is terminated by a single
line.[Figure 8]

DESCRIBE
rtsp://localhost:554/My.3gp rtsp/1.0
CSeq: 1
Figure 8:MyRTSPListener initiates a RTSP session by DESCRIBE
command.

MyRTSPListener, on a successful attempt gets a response
from server. This response, starting with RTSP/1.0 200 OK,
contains several important parameters. As My.3gp is stream-
able, response contains information of any track of that file.
The control string with track id (a=control: trackID) is used
to initiate next request to the server.

MyRTSPListener initiates streaming from server by SETUP
command using media files’ track information. Command
includes the transport properties of RTP stream. Our mobile
VOIP client, for example, requests server to stream trackid 1
of My.3gp file, to send RTP packets over UDP, to send to our
mobile device port 8080. [Figure 9]. RTSP uses 8080 as client
port where RTCP uses 8081 for the same.

SETUP
rtsp://localhost:554/My.3gp/trackID=1rtsp/1.0
CSeq: 2
TRANSPORT:UDP;unicast;client
Figure 9:RTSP SETUP request from MyRTSPListener

Darwin Streaming Server, on successful SETUP request,
responses with the session information. An OK response from
server means that MyRTSPListener can now initiate PLAY
[Figure 10].

SETUP rtsp://localhost:554/My.3gp/trackID=1

rtsp/1.0
CSeq: 3
TRANSPORT: UDP;unicast;client,ort = 8080, 8081

igure 10:Response from Darwin Streaming Server on SET UP

request

Now Mobile VOIP client requests server to start sending
RTP packets with PLAY command. This command is issued
on media file My.3gp file, not on individual tracks.[Figure 11].
Same is applicable for PAUSE or TEARDOWN request. They
are similar to PLAY except the command.
PLAY rtsp://localhost:554/My.3gp rtsp/1.0

CSeq: 3

Session: 556372992204
igure 11:MyRTSPListener initiates PLAY command to play My.3gp

in RTP.

Government agent on streaming server can watch call
information of connected RTSP clients. Information include
bit rate of media packets, bytes sent, packet loss , connection
time etc. [Figure 12]

Connecled Users

Diphey &8 ¥ ontries Puge Rolesh ntenvat S iicondy ¢
Conmecied Users
(T Edtiag BEm | Bt | Mluells | DmCimed | Coesl

': ColEURIRE -0 R b s Fia hangle et ol

) o 1506 00 00 00

Figure 12:Tracking of voice traffic of GOVERNMENT
CONTROLLED MOBILE VOIP clients on RTP Streaming Server.

III. FUTURE WORK

Government Controlled Mobile VOIP will overcome the
overhead of interim server by implementing distributed shared
objects. The overhead includes ’keeping huge voice data in
storage’ and ’streaming of data in HTTP or RTP’. Monitoring
agents will be able to share their huge voice data in a
distributed system. Streaming workload will be shared by
exploring distributed shared objects CORBA, RMI or SOAP.

All media data transfer of our J2ME based software will
be in RTP in coming stages. Sending from mobile to server
in RTP has not yet been possible in J2ME, but research is
going on. As soon as it arrives, our sender mobile client will

155

implement it. Sender will stream his voice to government agent
in real time. Our RTSP J2ME client will be updated to hear
voice from to RTP server. At present it is performing RTSP
protocol with the media data on Darwin Streaming Server.
RTSP J2ME client of our software runs on RTSP enabled
expensive phone sets. But, we are thinking about possible low
cost alternative so that mass people can enjoy RTSP feature
with java enabled limited profile- mobiles.

IV. CONCLUSION

VOIP on mobile is a relatively recent technology consid-
ering there are VOIP solutions for web based or desktop
platform. Enabling people to make call from remote areas
using internet is a cheaper solution. It can be handful for
abroad call or distant call. Even in areas where GSM network
is not available, this software can be useful for video or audio
call using wireless network. Government or any monitoring
authority can use this system to look over the voice traffic
within its network

Solution thought for overhead problem on monitoring server
has moved us toward a distributed approach for the system. We
have thought about distributed monitoring system with storage
and streaming servers. Why we have to give extra workload
on servers? Can’t we provide solution on mobile clients? Are
the mobile devices capable of storing data or history? If not
what can be the alternative? Can’t they be used for VOIP
protocol stack for the whole system? Going with the questions
we have reached a solution. A middleware on mobile should
have support for VOIP protocols exploring distributed shared
objects SOAP, CORBA and RMI. This will decrease workload
on server implementing VOIP protocols. As mobile devices
cannot contain massive storage and it will not be trust-worthy,
distributed monitoring servers will handle storage of media
data.

REFERENCES

[1] Request for Comments: 2616, Hypertext Transfer Protocol — HTTP/I.1,
Network Working Group, IETF.

[2] Request for Comments: 1889 , RTP: A Transport Protocol for Real-Time
Applications, Audio-Video Transport Working Group,IETF.

[3] Request for Comments: 2326 , RTSP: Real Time Streaming Protocol ,
Network Working Group ,IETF .

[4] JSR 135, MMAPI:Mobile Media API , . Sun Developers Nework, Sun
Microsystems

[5] Vikram Goyal, Pro Java ME MMAPI, Mobile Media API for Java
MicroEdition, . Appress.

156

